• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2020, Vol. 42 ›› Issue (07): 1215-1225.doi: 10.3969/j.issn.1007-130X.2020.07.010

• 图形与图像 • 上一篇    下一篇

融合CN跟踪算法改进的TLD实时目标跟踪算法

张晶1,2,3,黄浩淼1,王健敏4,保峻嵘5   

  1. (1.昆明理工大学信息工程与自动化学院,云南 昆明 650500;2.云南枭润科技服务有限公司,云南 昆明 650500;

    3.昆明理工大学云南省人工智能重点实验室,云南 昆明 650500;4.云南省农村科技服务中心,云南 昆明 650021;

    5.云南省信息技术发展中心,云南 昆明 650228)
  • 收稿日期:2019-10-14 修回日期:2020-02-09 接受日期:2020-07-25 出版日期:2020-07-25 发布日期:2020-07-25
  • 基金资助:
    云南省技术创新人才资助项目(2019HB113);云南省“万人计划”产业技术领军人才资助项目(云发改人事[2019]1096号)

An improved TLD real-time target tracking  algorithm based on CN algorithm

ZHANG Jing1,2,3,HUANG Hao-miao1,WANG Jian-min4,BAO Jun-rong5   


  1. (1.Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500;

    2.Yunnan Xiaorun Technology Service Co.,Ltd.,Kunming 650500;

    3.Yunnan Key Laboratory of Artificial Intelligence,Kunming University of Science and Technology,Kunming 650500;

    4.Yunnan Rural Science and Technology Service Center,Kunming 650021;

    5.Yunnan Information Technology Development Center,Kunming 650228,China)

  • Received:2019-10-14 Revised:2020-02-09 Accepted:2020-07-25 Online:2020-07-25 Published:2020-07-25

摘要: 针对TLD算法跟踪框在目标非刚性形变、旋转、背景杂乱等情景中容易导致跟踪漂移的问题,提出了一种融合CN跟踪算法
改进的TLD实时目标跟踪算法(TLD-CN)。首先对跟踪框内区域计算图像显著性得到BRISK算法采样特征点的阈值,获得合适的特征点以建立旋转和尺度归一化的描述子,再融合颜色特征和纹理特征对前后帧跟踪框内描述子进行最优相似性匹配,得到匹配的特征点集合,对集合内特征点进行判别式字典的稀疏编码后,分别与CN跟踪框和TLD跟踪框的中心像素点进行相似度的度量,得到输出框调整的权重系数。实验结果表明,TLD-CN跟踪算法通过特征点度量出2种算法融合的权重值调整输出框,在目标形变、旋转、背景杂乱、快速运动等复杂跟踪情景中,具有很高的精度和成功率。权重系数自适应更新也避免了模型过拟合,达到实时跟踪效果。


关键词: TLD跟踪框, 图像显著性, 颜色特征, 相似度, 描述子

Abstract: Aiming at the problem that the tracking frame of the tracking-learning-detection (TLD) algorithm can cause tracking drift when the target is not rigidly deformed and rotated and the background is cluttered, an improved TLD real-time visual tracking algorithm incorporating the CN algorithm (TLD-CN) is proposed. Firstly, TLD-CN calculates the image saliency of the area within the tracking frame to obtain the threshold of the feature points sampled by the BRISK algorithm.  The appropriate feature points are obtained to establish the rotation and scale normalized descriptors. Secondly, the color features and texture features are fused to track the descriptors in the frame before and after the frame. The optimal similarity matching is performed to obtain a matched feature point set. After the discriminative encoding of the discriminative dictionary for the feature points in the set, the similarity measures are performed with the central pixel points of the CN tracking box and the TLD tracking box to obtain the weighting factors after output box adjustment. The experimental results show that the TLD-CN algorithm measures the weight value of the output box adjustment after fusing the two algorithms through the feature points, and has high accuracy and success in complex tracking scenarios such as target deformation, rotation, background clutter, and fast motion rate. The adaptive updating of the weight coefficients avoids model over-fitting and achieves real-time tracking effect.


Key words: TLD tracking box, image saliency, color feature, similarity, descriptor

中图分类号: