• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2010, Vol. 32 ›› Issue (8): 138-140.doi: 10.3969/j.issn.1007130X.2010.

• 论文 • 上一篇    下一篇

一种改进的神经网络算法及其在烧结成本预测中的应用研究

何国强1,孙英1,王斌2   

  1. (1.中冶长天国际工程有限责任公司,湖南 长沙 410007;2.中南大学信息科学与工程学院,湖南 长沙 410083)
  • 收稿日期:2009-08-26 修回日期:2009-12-10 出版日期:2010-07-25 发布日期:2010-07-28
  • 作者简介:何国强(1961),男,湖南石门人,博士生,高级工程师,研究方向为烧结工艺;孙英,高级工程师,研究方向为烧结控制系统;王斌,博士,副教授,CCF会员(E200006977M),研究方向为软件工程。
  • 基金资助:

    湖南省自然科学基金资助项目(07JJ6124);中冶长天烧结综合控制系统之数据分析及决策支持系统研究

An Improved Neural Network Algorithm and Its Application in Sinter Cost Prediction

HE Guoqiang1,SUN Ying2,WANG Bin2   

  1. (1.Changtian International Engineering Co.,Ltd,MCC,Changsha 410007;
    2.School of Information Science and  Engineering,Central South University,Changsha 410083,China)
  • Received:2009-08-26 Revised:2009-12-10 Online:2010-07-25 Published:2010-07-28

摘要:

在烧结生产过程中,固体燃耗占据了生产能耗的70%左右,而与固体燃耗相关的工艺参数与固体燃耗之间呈现出非线性关系。为了实现优化生产和达到降低生产能耗的目的,本文采用改进后的BP神经网络挖掘两者之间存在的映射关系。本文提出了一种基于广义Curry原则非精确线搜索的共轭梯度算法,利用新的线搜索规则来确定算法的学习步长,在保证算法全局收敛的前提下,优化学习步长,提高了算法的收敛速度。利用改进的算法对烧结生产成本进行分析和预测,仿真结果说明改进算法具有很好的收敛性,预测的均方误差为0.009 8,准确率达到94.31%。

关键词: 神经网络, 线搜索, 共轭梯度, 烧结生产成本, 收敛性

Abstract:

In the production process of sintering, the consumption of solid fuel is about 70% of the total energy consumption. There exists a nonlinear relationship between technological parameters and the solid fuel consumption in the sintering process. For the purpose of optimizing production and reducing energy consumption, this paper proposes an improved BP neural network to find the correlations between technological parameters and the solid fuel consumption. This paper proposes an improved conjugate gradient algorithm which combines the conjugate gradient algorithm with the inexact line search route based on the generalized Curry principle. The proposed algorithm has global convergence, optimizes the learning steps using new line search rules and improves the convergence speed. The new algorithm is applied in the cost prediction of actual sintering production. Simulation results show that the algorithm has better convergence compared with the traditional conjugate gradient algorithms. The MSE of prediction is 0.0098 and the accuracy rate reaches 94.31%.

Key words: neural network;line search;conjugate gradient;costs of sinter;convergence