• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2010, Vol. 32 ›› Issue (8): 56-59.doi: 10.3969/j.issn.1007130X.2010.

• 论文 • 上一篇    下一篇

基于机器学习的蜂窝网络节点定位算法研究

王鲁达1,高守平1,方芳1,2,李煜民1   

  1. ( 1.湘南学院计算机系,湖南 郴州 423000;2;湖南大学计算机与通信学院,湖南 长沙 410082)
  • 收稿日期:2009-06-08 修回日期:2009-10-21 出版日期:2010-07-25 发布日期:2010-07-28
  • 通讯作者: 王鲁达 E-mail:wang_luda@163.com
  • 作者简介:王鲁达(1981),男,山东济南人,硕士,工程师,研究方向为网络安全与人工智能等;高守平,博士,教授,研究方向为网格计算;方芳,硕士生,助教,研究方向为数据挖掘与计算机网络分布式计算等;李煜民,硕士,助教,研究方向为网络安全。
  • 基金资助:

    2008年湖南省高等学校科学研究重点资助项目(08A064);2009年湖南省科技计划资助项目(2009FJ3194)

Research of the Node Localization AlgorithmBased on Machine Learning for Cellular Networks

WANG Luda1,GAO Shouping1,FANG Fang1,2 ,LI Yumin1   

  1. (1.Department of Computer Science,Xiangnan University,Chenzhou 423000;2.School of Computer and Communications,Hunan University,Changsha  410082,China)
  • Received:2009-06-08 Revised:2009-10-21 Online:2010-07-25 Published:2010-07-28
  • Contact: WANG Luda E-mail:wang_luda@163.com

摘要:

蜂窝网络希望能在广泛的应用领域内实现复杂的大范围监测和追踪任务,而移动台节点定位是相关应用的基础。本文在对现有无线网络定位技术研究的基础之上,有针对性地分析当前几种机器学习经典算法,提出了一种基于支持向量机树型多分类的蜂窝通信系统节点定位算法,充当分布式定位的全局坐标算法。通过对算法原理的分析以及实验结果对比,证明了基于机器学习的定位算法在定位效果方面解决了困扰基于信号参数的定位技术的边界问题与集中洞问题,在定位的平均误差、标准偏差和分布式定位正确率以及实现代价几个方面的总体性能均优于基于信号参数的定位技术与GPS one定位技术。

关键词: 蜂窝网络, 节点定位, 全局坐标算法, 支持向量机

Abstract:

Cellular communication systems aim at achieving complex largescale monitoring and tracing applications in wider fields, which is based on mobile station nodes localization. By studying the existing node localization technologies, this paper analyses the current several classical machine learning algorithms purposefully, and proposes a cellular communication system node localization algorithm based on machine learning, using it as a centralized coordinate algorithm of distributed node localization. Through simulation and theoretical  analysis, it proves that the node localization algorithm in cellular communication systems based on machine learning can resolve the border problem and the coverage hole problem in the traditional algorithms based on signal parameters, and its overall function is better than the traditional algorithms based on signal parameters and GPSone in terms of average error, standard deviation and the accuracy rate of distributed localization as well as the cost superior to the traditional location algorithm based on signal parameters.

Key words: cellular communication system;node localization;centralized coordinate algorithm;support vector machine