• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2011, Vol. 33 ›› Issue (3): 67-72.doi: 10.3969/j.issn.1007130X.2011.

• 论文 • 上一篇    下一篇

基于邻域结构相似性的混合噪音线性滤波算法

罗晓军1,2,王世秀3,李兵4,许俊玲2   

  1. (1.商丘职业技术学院计算机系,河南 商丘 476000;2.长沙理工大学数学与计算科学学院,湖南 长沙 410114; 3.商丘电视台,河南 商丘 476000;4.中山职业技术学院,广东 中山 528404)
  • 收稿日期:2010-03-21 修回日期:2010-08-02 出版日期:2011-03-25 发布日期:2011-03-25
  • 作者简介:罗晓军(1970),男,河南商丘人,硕士生,副教授,CCF会员号(E200015251M),研究方向为数字图像处理。李兵(1957),男,湖南长沙人,博士,教授,研究方向为拓扑学及数字图像处理许俊玲(1984),女,河南平顶山人,硕士生,研究方向为数字图像处理。

A Mixed Noise Linear Filtering Algorithm Based on the Neighborhood Structure Similarity

LUO Xiaojun1,2,WANG Shixiu3,LI Bing4,XU Junling 2   

  1. (1.Department of Computer Science,Shangqiu Vocational and Technical College,Shangqiu 476000;
    2.School of Mathematics and Computing Science,Changsha University of Science and Technology, Changsha 4410114;
    3.Shangqiu TV,Shangqiu 476000;4.Zhongshan Vocational and Technical College,Zhongshan 528404,China)
  • Received:2010-03-21 Revised:2010-08-02 Online:2011-03-25 Published:2011-03-25

摘要:

本文提出一种基于像素邻域结构信息相似性的混合噪音线性滤波算法(GLMF)。该算法是对线性混合

滤波器(LMF)的一种改进,它利用图像中存在着大量冗余信息的特性,恢复被混合噪音染污的像素,在判

断邻域内像素的相似性时,除考虑像素灰度值的相似性之外,又考虑了像素邻域结构的相似性,用像素灰度

值的梯度来表示邻域结构信息。仿真实验证明,用GLMF去噪的视觉效果和峰值信噪比(PSNR)均优于已知的

同类滤波器。该算法适用于恢复被高斯噪音和随机脉冲噪音混合污染的数字图像。

关键词: 数字图像, 高斯噪音, 脉冲噪音, 混合噪音, 滤波算法, 梯度算子

Abstract:

A mixed noise linear filtering algorithm based on the neighborhood structure

information’s similarity (GLMF) is proposed, which is also a good improvement of the linear

filter algorithm(LMF). This algorithm makes full use of the image of redundant information to

restore the mixed noise pollution of pixels. In judging the similarity of neighborhood pixels,

we consider the pixel values, and consider the similarity of a pixel neighborhood structure,

while using the gradient of pixel values to express neighborhood information. Simulation

experiments show, comparing with the existing similar filter, GLMF is better on both visual

effect and PSNR. This algorithm is applicable to restore the Gaussian noise and random pulse

noise mixed pollution digital images.

Key words: digital image;Gaussian noise;impulse noise;mixing noise;filtering algorithm; gradient operator