• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2015, Vol. 37 ›› Issue (08): 1573-1578.

• 论文 • 上一篇    下一篇

基于对偶树复小波变换的模糊图像质量评价

刘婧,王威,李骥,杨蔚蔚   

  1. (长沙理工大学计算机与通信学院,湖南 长沙 410114)
  • 收稿日期:2014-09-05 修回日期:2014-12-16 出版日期:2015-08-25 发布日期:2015-08-25
  • 基金资助:

    博士后基金资助项目(2013M542467);国防973基金资助项目

Blur image quality assessment based on DTCWT   

LIU Jing,WANG Wei,LI Ji,YANG Weiwei   

  1. (School of Computer and Communication Engineering,Changsha University of Science & Technology,Changsha 410114,China)
  • Received:2014-09-05 Revised:2014-12-16 Online:2015-08-25 Published:2015-08-25

摘要:

小波域和结构相似度SSIM的质量评价方法已经成为图像处理领域的研究热点,然而都存在一定的缺陷:传统的离散小波变换缺乏平移不变性,其方向选择性也十分有限;对于严重模糊的图像,SSIM评价结果并不十分准确。基于此,提出了一种适应于模糊图像质量评价的新算法。该算法用对偶树复小波变换DTCWT将图像进行分解来获取复小波系数,然后对所得到的六个方向的高频子带系数分别进行平均梯度幅度值的结构相似度MGSIM测量,最后将所得到的全部MGSIM的均值作为最终的原始模糊图像的模糊值。仿真实验验证了本方法比结构相似度更吻合人眼的视觉效果,与主观评价方法具有很好的一致性,并且在各方面的性能都优于目前有关文献的方法。

关键词: 小波域, 对偶树复小波变换, SSIM, 平均梯度幅度值的结构相似度(MGSIM)

Abstract:

Wavelet domain and structural similarity(SSIM) quality assessment method have become hotspots in the field of image processing, however, both of them have some flaws: the traditional discrete wavelet transform lacks of translational invariance and its direction selectivity is also highly limited; for severe blurred images, the results of the SSIM are not very accurate. Therefore, we propose a new algorithm for blur image quality evaluation. This algorithm uses dual tree complex wavelet transform (DTCWT) image decomposition to obtain the complex wavelet coefficients and the high frequency sub band coefficients of all the six directions. Then the structural similarity of the average gradient amplitude is measured. Finally all the mean gradientmagnitudebased structural similarity ( MGSIM) average is calculated as the final fuzzy values of the original blur images. Experimental results show that the proposed method fits the visual characteristics of human eyes better in contrast with the structural similarity method, and well matches the results of subjective evaluation methods. The assessment results are better than the current literature in terms of overall performance.

Key words: wavelet domain;dual-tree complex wavelet transform;SSIM;mean gradient magnitude based structural similarity