• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (08): 1497-1505.

• 人工智能与数据挖掘 • 上一篇    下一篇

基于音频特征的工程车辆工况识别研究

刘文才1,姚凯学1,杨乘2,3   

  1. (1.贵州大学计算机科学与技术学院,贵州 贵阳 550025;2.贵州师范大学物理与电子科学学院,贵州 贵阳 550001;
    3.贵州省教育厅汽车电子技术特色重点实验室,贵州 贵阳 550001)
  • 收稿日期:2020-10-27 修回日期:2021-03-30 接受日期:2022-08-25 出版日期:2022-08-25 发布日期:2022-08-25
  • 基金资助:
    国家自然科学基金(62062025,61662010);贵州省科技计划重点项目(黔科合基础[2019]1432)

Working condition recognition of engineering vehicle based on audio features

LIU Wen-cai1,YAO Kai-xue1,YANG Cheng2,3   

  1. (1.School of Computer Science & Technology,Guizhou University,Guiyang 550025;
    2.School of Physical and Electronic Sciences,Guizhou Normal University,Guiyang 550001;
    3.Key Laboratory of Automotive Electronics Technology of 
    Education Department of Guizhou Province,Guiyang 550001,China)
  • Received:2020-10-27 Revised:2021-03-30 Accepted:2022-08-25 Online:2022-08-25 Published:2022-08-25

摘要: 高效率地使用工程车辆是工程项目管理中节约成本的有效方法,无人监管环境下工程车辆的工况识别,是实现工程车辆高效率使用的有效手段。目前以GPS等技术为核心的车辆智能管理系统未对工程车辆进行工况识别,提出一种基于GRU循环神经网络的工程车辆工况识别方法,通过对工程车辆在不同工况下产生的音频信号进行分析,从中提取Mel倒谱系数作为主要特征,构建GRU循环神经网络模型进行训练和识别。实验结果表明,该方法可以实现对工程车辆工况的有效识别。

关键词: 工程车辆, 工况识别, 音频特征, Mel倒谱系数, 循环神经网络

Abstract: Efficient use of construction vehicles is an effective way to save costs in engineering project management. Working condition recognition of construction vehicles in an unsupervised environment is an effective means to achieve efficient use of construction vehicles. At present, vehicle intelligence with GPS and other technologies as the core management system do not recognize the working condition of the construction vehicle. This paper proposes a working condition recognition method for construction vehicles based on GRU re-current neural network. By analyzing the audio signals generated by construction vehicles under different working conditions, the Mel Frequency Cepstral Coefficient is extracted as the main features and the GRU recurrent neural network model is constructed. Perform training and recognition. Experiments show that this method can realize effective recognition of working conditions of construction vehicles..

Key words: engineering vehicle, working condition recognition, audio feature, Mel frequency cepstral coefficient, recurrent neural network