计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (08): 1497-1505.
刘文才1,姚凯学1,杨乘2,3
LIU Wen-cai1,YAO Kai-xue1,YANG Cheng2,3
摘要: 高效率地使用工程车辆是工程项目管理中节约成本的有效方法,无人监管环境下工程车辆的工况识别,是实现工程车辆高效率使用的有效手段。目前以GPS等技术为核心的车辆智能管理系统未对工程车辆进行工况识别,提出一种基于GRU循环神经网络的工程车辆工况识别方法,通过对工程车辆在不同工况下产生的音频信号进行分析,从中提取Mel倒谱系数作为主要特征,构建GRU循环神经网络模型进行训练和识别。实验结果表明,该方法可以实现对工程车辆工况的有效识别。