• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2011, Vol. 33 ›› Issue (9): 169-173.

• 论文 • 上一篇    下一篇

粒子群优化RBF神经网络光伏电池建模研究

张军朝,陈俊杰   

  1. (太原理工大学计算机科学与技术学院,山西 太原 030024)
  • 收稿日期:2010-10-25 修回日期:2011-01-12 出版日期:2011-09-25 发布日期:2011-09-25
  • 基金资助:

    张军朝(1974),男,山西太原人,博士生,高级工程师,研究方向为嵌入式控制、工程应用软件和工程招投标。

Modeling PhotovoltaicArrays Based on the RBF Neural Networks Improved by Particle Swarm Optimization Algorithm

ZHANG Junchao,CHEN Junjie   

  1. (School of Computer Science and Technology,Taiyuan University of Technology,Taiyuan 030024,China)
  • Received:2010-10-25 Revised:2011-01-12 Online:2011-09-25 Published:2011-09-25

摘要:

本文研究神经网络在光伏电池建模优化问题。由于光伏电池具有高度非线性特性,其输出功率受到外界自然因素的影响,使得传统方法不能满足光伏控制系统动态要求。针对上述问题,本文提出一种粒子群优化的神经网络光伏电池建模算法。改进的方法以日照、温度和负载电压作为提出的RBF神经网络模型的输入值,把光伏电池的输出功率作为神经网络的输出,采用RBF神经网络对光伏电池进行建模,同时利用粒子群算法对神经网络参数进行优化,最后建立光伏电池的动态响应模型。仿真实验结果证明,所提模型更好地克服传统方法的缺点,收敛速度快,具有较高的预测精度和适合能力。

关键词: 光伏电池, 粒子群算法, 神经网络, 仿真

Abstract:

Photovoltaic Array is nonlinear, and the power generated by it is influenced by sun light, temperature and so on. We put forward PV array model by using neural networks identification technique in this paper. The temperature, radiation and voltage of the solar cells are taken as the input and the current as the output of the neural networks model. Using RBF neural network to model for photovoltaic battery and particle swarm optimization algorithm to optimize the RBF neural network, finally the photovoltaic model is established. Simulated experiments are carried out on the photovoltaic battery data, the results show that the improved RBF neural networks have better accuracy and adapt ability than traditional RBF method. The RBF neural networks modeling makes it possible to design on-line controller of photovoltaic system.

Key words: photovoltaic array;particle swarm optimization;neural network;simulation