• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2012, Vol. 34 ›› Issue (3): 122-127.

• 论文 • 上一篇    下一篇

基于扩展SMO求解核函数非正定的SVR模型算法

周锦程1,王丹1,余泉1,2,张维1   

  1. (1.黔南民族师范学院数学系,贵州 都匀 558000;2.中山大学信息科学与技术学院,广东 广州 510275)
  • 收稿日期:2010-11-23 修回日期:2011-02-28 出版日期:2012-03-26 发布日期:2012-03-25
  • 基金资助:

    贵州省科技厅科学基金资助项目(黔科合J字[2009]2068号);贵州省教育厅自然科学基金资助项目(黔教科2009064)

An Algorithm of Solving the NonPositive Kernel SVR Model Based on the Extended SMO Method

ZHOU Jincheng1,WANG Dan1,YU Quan1,2,ZHANG Wei1   

  1. (1.Department of Mathematics,Qiannan Normal College for Nationalities,Duyun 558000;
    2.School of Information Science and Technology,Sun YatSen University,Guangzhou 510275,China.)
  • Received:2010-11-23 Revised:2011-02-28 Online:2012-03-26 Published:2012-03-25

摘要:

将求解SVC模型的算法运用到求解SVR模型中一般要SVR模型的核函数正定且满足Mercer条件,而实际应用中利用几何框架将SVC模型转换成相应的SVR模型时,通常无法保证经转换得到的SVR模型的核函数具有正定性,从而导致SVR模型不是凸规划模型而无法求解。为解决上述问题,本文提出了一种运用扩展的序列最小最优化方法(SMO)来求解基于非正定核的SVR模型,设计了算法中工作集的选择准则,解决了算法中如何选择工作集变量当前的最优值问题。由于该算法不要求核函数具有正定性,从而拓宽了SVR模型核函数的选择范围。实验表明,该算法对基于正定或非正定核的SVR模型都具有很好的泛化性能和回归精度,具有一定的理论意义和实用价值。

关键词: 非正定核, 损失函数, 序列最小最优化算法, 回归型支持向量机模型

Abstract:

Applying the  SVC model algorithm to solving the  SVR model often needs the SVR kernel function is positive and satisfies the Mercer conditions, but in actual applications, while using the  SVR geometric frame to convert the SVC kernel function to the corresponding SVR kernel function, we usually cannot guarantee the converting kernel function is qualitative, which  leads to that the SVR optimization model is not a convex programming model that we cannot solve it. To solve these problems, we propose to use the extended SMO algorithm to solve the SVR problem with a nonpositive kernel and develope its working set selection rule, analyze how to select in the algorithm the current work collection's optimal variable value. Because the algorithm does not require the kernel function is positive, it expands the range of the kernel function’s options. The simulation results show that this algorithm for the nonpositive kernel function SVR model has good generalization performance and regression accuracy, featuring a certain theoretical and practical significance.

Key words: non-positive kernel;loss function;SMO algorithm;SVR model