• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (04): 646-653.

• 图形与图像 • 上一篇    下一篇

改进InceptionV3与迁移学习的太阳能电池板缺陷识别

史册,南新元   

  1. (新疆大学电气工程学院,新疆 乌鲁木齐 830047)
  • 收稿日期:2021-08-30 修回日期:2021-11-21 接受日期:2023-04-25 出版日期:2023-04-25 发布日期:2023-04-13
  • 基金资助:
    国家自然科学基金(52065064)

Improved InceptionV3 and transfer learning for solar panel defect recognition

SHI Ce,NAN Xin-yuan   

  1. (School of Electrical Engineering,Xinjiang University,Urumqi 830047,China)
  • Received:2021-08-30 Revised:2021-11-21 Accepted:2023-04-25 Online:2023-04-25 Published:2023-04-13

摘要: 传统识别方法对太阳能电池板表面缺陷的识别准确率低、速度慢,针对该情况,提出一种基于改进InceptionV3与迁移学习的识别方法。首先对采集到的太阳能电池板图像进行预处理;其次采用平衡因子δ,引入了新损失函数来改进InceptionV3神经网络,保证了网络的识别率;最后结合迁移学习方法建立缺陷识别模型,进一步提升性能。仿真结果表明,该方法有效提升了太阳能电池板的缺陷识别准确率和速度,其识别准确率高达96.43%,相较于传统InceptionV3模型提升了2.45%,平均分类时间缩短了4.5 ms,表明此方法取得了很好的效果,且具有广阔的应用前景。

关键词: 太阳能电池板, 神经网络, 损失函数, InceptionV3, 迁移学习, 缺陷识别

Abstract: In view of the low accuracy and slow speed of the traditional recognition methods for the surface defects of solar panels, this paper proposes a method based on improved InceptionV3 and transfer learning. Firstly, image preprocessing is carried out on the collected solar panels. Secondly, a new loss function is introduced to improve the InceptionV3 neural network by using the balance factor  δ to ensure the recognition rate of the network. Finally, a defect recognition model is established with the transfer learning method to further improve the performance. The simulation results show that the method can effectively improve the defect recognition accuracy and speed of solar panels. The recognition accuracy is up to 96.43%, which is 2.45% higher than the traditional InceptionV3 model, and the average classification time is shortened by 4.5 ms. The experimental results show that this method has good effect and has great application prospect. 

Key words: solar panel, neural network, loss function, InceptionV3, transfer learning, defect recognition