J4 ›› 2012, Vol. 34 ›› Issue (5): 107-111.
李 智1,谢剑斌1,陈章永2,程永茂2,刘 通1
LI Zhi1,XIE Jianbin1,CHEN Zhangyong2,CHENG Yongmao2,LIU Tong1
摘要:
针对以往疲劳检测算法普遍存在的受光照条件影响大、检测测速度慢以及可靠性差等问题,本文提出了一种基于Adaboost的疲劳表情快速检测算法。本文算法在不同环境光照的情况下,利用红外光源照明采集获得大量人脸红外图像样本。经过人脸检测定位以后,将人脸区域中眼睛、嘴巴这两个表情信息最集中的关键部位分割出来,用PCA方法分别提取两个子图块的形变特征,分别输入Adaboost训练得到两个分类器。检测时,待检测图像眼、嘴的特征分别通过相应分类器进行判别,将两个分类器的输出进行或运算得到最终的检测结果。该方法正确率高,速度快,具有很好的泛化能力和较强的鲁棒性,能够满足实时应用要求。