J4 ›› 2012, Vol. 34 ›› Issue (6): 106-110.
孔 旭1,孔琼香2,李一鹏1
KONG Xu1,KONG Qiongxiang2,LI Yipeng1
摘要:
本文首先将文本信息检索中LSI方法的思想和原理应用于手写数字识别问题,把手写数字图像看作空间向量的表示,通过计算未知数字与各训练集之间相关度排序来达到识别的目的,计算量小且有较低的误识率(5.5%);其次,通过对所有09数字的训练样本排列为一个矩阵,并对该矩阵进行奇异值分解,将各训练样本在适当维数的左奇异向量上分别投影,得到了一种低阶表示下的相关度计算方法,该方法在保持原有较低误识率的同时,能极大地压缩原有训练样本数据(压缩掉的数据百分比超过95%);另外,利用了区分不规范样本的思想,获得了更低的误识率(下降到4.5%)。