• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 图形与图像 • 上一篇    下一篇

基于改进分数阶SVD的块协作表示的小样本人脸识别算法

张建明1,2,廖婷婷1,2,吴宏林1,2,刘宇凯1,2   

  1. (1.长沙理工大学综合交通运输大数据智能处理湖南省重点实验室,湖南 长沙 410114;
    2.长沙理工大学计算机与通信工程学院,湖南 长沙 410114)

     
  • 收稿日期:2016-03-18 修回日期:2017-01-30 出版日期:2018-07-25 发布日期:2018-07-25
  • 基金资助:

    国家自然科学基金(61402053);湖南省交通厅科技计划(201446);湖南省教育厅科研项目(16A008,15C0055);湖南省研究生科研创新项目(CX2016B413)

A small sample face recognition algorithm based on
improved fractional order singular value decomposition
and collaborative representation classification
 

ZHANG Jianming1,2,LIAO Tingting1,2,WU Honglin1,2,LIU Yukai1,2   

  1. (1.Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation,
    Changsha University of Science and Technology,Changsha 410114;
    2.School of Computer and Communication Engineering,
    Changsha University of Science and Technology,Changsha 410114,China)

     
  • Received:2016-03-18 Revised:2017-01-30 Online:2018-07-25 Published:2018-07-25

摘要:

随着训练样本数目减少,传统人脸识别方法的性能会急剧下降,因此提出了改进的分数阶SVD(IFSVDR)的块协作表示算法,以提高小样本下人脸识别率。为了减少噪声对分类的干扰,对SVD算法进行改进,利用分数阶增大主要正交基权值,提高特征的判别力;对相对较小权值进行抑制,降低噪声的干扰。然后,将得到的特征图像用基于块的协作表示算法进行分类(PCRC)。相对传统稀疏分类算法,PCRC融合了集成学习,能更好地解决小样本问题,且CRC计算复杂度低于SRC。在扩展的Yale B和AR人脸数据库上的实验表明,本文提出的算法在单样本的情况下也有较高的识别率。

关键词: 人脸识别, 改进的分数阶奇异值分解, 基于块的协作表示分类, 小样本问题

Abstract:

With the reduction of training samples, the performance of traditional face recognition methods drops sharply. We propose an improved fractional order singular value decomposition (IFSVDR) method combined with patch based CRC (PCRC) framework. As the performance can be affected when training samples contain noise, we improve the SVD algorithm by using the fractional order to increase the weight of the main orthogonal basis, and decrease the weight of the relatively small basis to reduce the influence of noise on classification results. Then, we use the PCRC to classify the patches which are reconstructed by the IFSVDR. Compared with the classical sparse representation, the idea of ensemble learning enables the PCRC to deal with the small sample size problem. And the CRC has a lower computation complexity than the SRC. Experiments on the extended Yale B and AR face databases show that the proposed IFSVDR combining with the PCRC has a high recognition rate, even in the case of small sample.
 

Key words: face recognition, improved fractional order singular value decomposition, patch based collaborative representation classification, small sample problem