• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2013, Vol. 35 ›› Issue (6): 180-185.

• 论文 • 上一篇    下一篇

基于改进混合蛙跳算法的负荷模型参数辨识

张友华1,王联国2   

  1. (1.甘肃农业大学工学院,甘肃 兰州 730070;2.甘肃农业大学信息科学技术学院,甘肃 兰州 730070)
  • 收稿日期:2012-01-13 修回日期:2012-05-28 出版日期:2013-06-25 发布日期:2013-06-25
  • 基金资助:

    国家自然科学基金资助项目(61063028)

Parameter identification of load model based on an improved shuffled frog leaping algorithm

ZHANG Youhua1,WANG Lianguo2   

  1. (1.College of Engineering,Gansu Agricultural University,Lanzhou 730070;2.College of Information Science and Technology,Gansu Agricultural University,Lanzhou 730070,China)
  • Received:2012-01-13 Revised:2012-05-28 Online:2013-06-25 Published:2013-06-25

摘要:

针对电力系统负荷的随机性、时变性和不连续性等特点,提出了一种适用于静态负荷模型参数辨识的改进的混合蛙跳算法(ISFLA)。该算法在混合蛙跳算法(SFLA)的基础上,借鉴PSO算法思想,通过引入异步时变学习因子,对更新策略进行改进;其中“时变学习因子”可以明显提高SFLA算法的优化精度和加快收敛速度;并且能够很好地增强SFLA算法的局部开发能力和克服SFLA算法易于陷入局部最优解的缺点。仿真数据建模实例验证了该方法的有效性和可行性。

关键词: 混合蛙跳算法, 时变学习因子, 静态负荷模型, 参数辨识, 电力系统

Abstract:

Aiming at the characteristics of the power system load such as randomness,timevarying and uncontinuity, an improved shuffled frog leaping algorithm (ISFLA) that is applied to the parameter identification of the static load model was proposed. On the basis of the shuffled frog leaping algorithm and particle swarm optimization, the updating strategy of SFLA is modified by introducing the variable learning factor . It is proved that this algorithm can improve the accuracy of the optimization, accelerate the convergence speed, enhance the local development capability and overcome the SFLA’s shortage that is easy to get rid of the local optimal solution by introducing the variable learning factor. The simulation results demonstrate the effectiveness and feasibility of the proposed method.

Key words: shuffled frog leaping algorithm;variable learning factor;static load model;parameter identification;power system