摘要:
针对基本蛙跳算法在处理复杂函数优化问题时求解精度低且易陷入局部最优的缺点,提出了一种嵌入共轭梯度法的混合蛙跳
算法。该算法在基本蛙跳算法划分模因组的基础上引入共轭梯度法,由于基本蛙跳算法模因组的划分规则,使得排在最后的
青蛙子群个体位置较差,严重影响着整个群体的寻优速度,因而选取排列在后面的一部分模因组使用共轭梯度法进行求解,
这使得算法在进化中后期易跳出局部最优,提高了算法的收敛精度。所得混合蛙跳算法有效结合了基本蛙跳算法较强的全局
搜索能力和共轭梯度法快速精确的局部搜索能力。数值实验结果表明,所提出的改进蛙跳算法较基本蛙跳算法具有更高的收
敛精度,避免了陷入局部最优的缺点,且优化结果更加稳定。
庞凯立,梁昔明. 嵌入共轭梯度法的混合蛙跳算法[J]. 计算机工程与科学.
PANG Kai-li,LIANG Xi-ming.
A hybrid SFLA algorithm based on conjugate gradient method
[J]. Computer Engineering & Science.