• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2014, Vol. 36 ›› Issue (02): 275-285.

• 论文 • 上一篇    下一篇

基于数据分类的领域自适应新算法

顾鑫1,2,王士同1   

  1. (1.江南大学数字媒体学院,江苏 无锡214122;2.江苏北方湖光光电有限责任公司,江苏 无锡 214035)
  • 收稿日期:2012-09-20 修回日期:2012-11-30 出版日期:2014-02-25 发布日期:2014-02-25
  • 基金资助:

    国家自然科学基金资助项目(61170122,60975027);江苏省研究生创新工程项目(CXZZ110483)

A novel domain adaptation approach based on data classification       

GU Xin1,2,WANG Shitong1   

  1. (1.School of Digital Media,Jiangnan University,Wuxi 214122;
    2.Jangsu North Huguang OptoElectronics Co.Ltd., Wuxi 214035,China)
  • Received:2012-09-20 Revised:2012-11-30 Online:2014-02-25 Published:2014-02-25

摘要:

一般的机器学习都假设训练数据与测试数据分布相同,而领域自适应算法则是在不同数据分布条件下进行知识传递和学习,在数据挖掘、数据校正、数据预测等领域有着广泛的应用。支持向量机SVM的主要思想是针对二分类问题,在高维空间寻找一个最优分类超平面,以保证最小的分类错误率。CCMEB理论由Tsang I提出的,是一种改进了核向量机CVM的最小包含球算法,在大样本数据集处理上有着较快的速度。而CCMEB理论同样适用于二分类的SVM数据集。将SVM理论、CCMEB理论与概率分布理论相结合,提出了一种全新的基于数据分类的领域自适应算法CCMEBSVMDA,该算法通过计算各自分类数据组的包含球球心,能够有效地对不同领域数据进行整体校正和相似度识别,具有较好的便捷性和自适应性。在UCI数据、文本分类等数据上对该算法进行了验证,取得了较好的效果。

关键词: 支持向量机, 领域自适应, 最小包含球, 中心约束型最小包含球

Abstract:

General machine learning assumes that the distribution of training data and test data are same, but the domain adaptation algorithms aims at handling different but similar distributions among training sets, which have a wide range of applications such as transfer learning, data mining, data correction, data projections. Support vector machine (SVM) attempts to find an optimal separating hyperplane for binaryclassification problems in highdimensional space, in order to ensure the minimum classification error rate. CCMEB proposed by I Tsang, as an improvement of the CVM, is particularly suitable for training on large datasets. In this article SVM and CCMEB are combined with probability distribution theory to formulate a novel domain adaptation approach (CCMEBSVMDA).  By calculating the center of each dataset, we can correct the dataset or identify the similarity of data between different domains.This fast algorithm has a good adaptability. As a validation we test it on the fields of “UCI data” and “text classification data” and the obtained experimental results indicate the effectiveness of the proposed algorithm.

Key words: SVM;domain adaptation;minimum enclosing ball;CCMEB