• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2014, Vol. 36 ›› Issue (04): 615-619.

• 论文 • 上一篇    下一篇

小波变换与GARCH组合模型的网络流量预测

刘渊,黄世忠   

  1. (江南大学数字媒体学院,江苏 无锡 214211)
  • 收稿日期:2012-08-21 修回日期:2012-12-19 出版日期:2014-04-25 发布日期:2014-04-25
  • 基金资助:

    江苏省自然科学基金资助项目(BK201103);国家自然科学基金资助项目(61103223);江苏省“六大高峰人才”计划资助项目

Application of GARCH model with wavelet
transform in network traffic forecast             

LIU Yuan,HUANG Shizhong   

  1. (School of Digital Media,Jiangnan University,Wuxi 214211,China)
  • Received:2012-08-21 Revised:2012-12-19 Online:2014-04-25 Published:2014-04-25

摘要:

在一些网络环境当中,网络流量具有非线性、异方差性和波动集群现象,传统的小波变换与ARMA组合模型不能很好地描述网络流量的这些特性。因此,研究使用了小波变换与广义自回归条件异方差GARCH组合模型来预测网络流量。首先,使用小波变换原理将网络流量序列分解成高频部分和低频部分,在此基础上对各个子序列分别建立相应的GARCH模型并进行预测;然后,使用小波变换原理将各个子序列的预测结果进行重构,从而最终实现对原始网络流量的预测。通过仿真实验表明,该模型的预测精度较之传统的小波变换与ARMA组合模型的预测精度得到了大幅提升。

关键词: 小波变换, ARMA模型, GARCH模型, 网络流量预测

Abstract:

Network traffic has characteristics of nonlinearity, heteroskedasticity, and volatility clustering in some network environments. Traditional models such as Auto Regressive Moving Average(ARMA) model with wavelet transform fail to describe these characteristics very well. Therefore, Generalized Auto Regressive Conditional Heteroskedasticity(GARCH) model with wavelet transform is studied for network traffic forecast. With wavelet transform, a network traffic series is divided into low frequency part and high frequency part, which are applied for GARCH modeling and forecasting respectively. Then, the forecast results of the subseries are reconstructed so as to implement the forecast of the original network traffic. The simulation shows that the accuracy of the forecast of GARCH model with wavelet transform is much better than that of ARMA model with wavelet transform.

Key words: wavelet transform;ARMA model;GARCH model;network traffic forecast