• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2016, Vol. 38 ›› Issue (01): 114-119.

• 论文 • 上一篇    下一篇

量子遗传算法优化BP神经网络的网络流量预测

张立仿,张喜平   

  1. (河南师范大学网络中心,河南 新乡 453007)
  • 收稿日期:2015-01-09 修回日期:2015-03-16 出版日期:2016-01-25 发布日期:2016-01-25
  • 基金资助:

    河南省基础与前沿技术研究计划(112300410240)

Network traffic prediction based on BP neural
networks optimized by quantum genetic algorithm 

ZHANG Lifang,ZHANG Xiping   

  1. (Network Center,Henan Normal University,Xinxiang  453007,China)
  • Received:2015-01-09 Revised:2015-03-16 Online:2016-01-25 Published:2016-01-25

摘要:

为了提高网络流量的预测精度,提出了一种改进的多种群量子遗传算法优化BP神经网络的网络流量预测模型。在确定了神经网络的结构后,采用多种群量子遗传算法对BP神经网络的初始权值和阈值进行优化。该模型利用K均值聚类算法将种群划分成若干子种群,多个子种群分别进化以保持种群的多样性。子种群间通过移民操作进行信息交互,减小了算法陷入局部最优的概率。同时采用一种自适应的量子旋转门调整策略加快算法的收敛速度。仿真结果表明,相较传统方法,该模型在网络流量预测方面具有收敛速度快、预测精度高的优点。

关键词: 网络流量预测, 量子遗传算法, BP神经网络, 移民操作, K均值聚类算法

Abstract:

In order to improve the prediction precision of network traffic, we propose a network traffic prediction model based on optimized BP neural networks with an improved multipopulation quantum genetic algorithm. After the neural network structure is fixed, the multipopulation quantum genetic algorithm is used to optimize the initial weights and thresholds of the BP neural network. The model divides a population into several subpopulations by using the Kmeans clustering algorithm, and maintains the diversity of the population through respective evolution of several subpopulations. Information interaction among subpopulations through immigration operation decreases the possibility of falling into local optimum. An adaptive quantum rotation gate adjustment strategy is adopted to accelerate the convergence rate. Simulation results show that compared with conventional models, the proposed model is of faster convergence rate and higher prediction precision in network traffic prediction.

Key words: network traffic prediction;quantum genetic algorithm;BP neural network;immigration operation;Kmeans clustering algorithm