• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2014, Vol. 36 ›› Issue (08): 1560-1565.

• 论文 • 上一篇    下一篇

基于对偶树复小波变换与PCA方法结合的图像变化检测算法研究

陈曦,梁方,王威   

  1. (长沙理工大学计算机与通信工程学院,湖南 长沙 410114)
  • 收稿日期:2012-11-12 修回日期:2013-03-26 出版日期:2014-08-25 发布日期:2014-08-25
  • 基金资助:

    省部级预研基金资助项目

Image change detection based on dual-tree complex
wavelet transform and principal component analysis          

CHEN Xi,LIANG Fang,WANG Wei   

  1. (Computer and Communication Engineering Institute,
    Changsha University of Science & Technology,Changsha 410000,China)
  • Received:2012-11-12 Revised:2013-03-26 Online:2014-08-25 Published:2014-08-25

摘要:

图像变化检测是遥感图像处理领域重要方向,大多数变化检测算法都存在算法复杂度高、抗噪性弱等缺陷,利用对偶树复小波变换的平移不变性与能提高方向分辨率的优点,把对偶树复小波变换运用于变化检测中,可以提高图像细节变化的检测和算法抗噪性。首先用对偶树复小波变换对图像进行尺度分解,把图像在每个尺度上分解成一个低通子图和六个方向的高通子图。然后运用PCA(主向量分析法)提取每个尺度与方向上的特征并降维,然后运用k均值算法将图像像素分成为变化与不变化两类,最后通过多尺度融合,得到变化检测图像。

关键词: 对偶树复小波变换, 变化检测, 主成分分析

Abstract:

Image change detection is a very important part of remote sensing image processing.Many algorithms have defects, such as highly complex or weakly antinosie. Since the dual-tree complex wavelet transform (DT-CWT) is shift invariant and has improved directional resolution, the DT-CWT is introduced in image change detection in order to provide accurate detection of small changes and attractive robustness against noise. Firstly, the DTCWT is used to decompose the image into a lowpass subband and six directional high-pass subbands at each scale. Secondly, principal component analysis (PCA) is used to create eigenvector and kmeans is used to categorize pixels into two parts (change and unchanged). Finally, both the intrascale fusion and the interscale fusion are used to detect the changed images.

Key words: DT-CWT;image change detection;PCA