摘要:
平面p-center问题是经典的NP难题,所以寻找高效的近似求解算法是解决实际应用问题时的基本需求。在人工蜂群算法的基础上,通过引入遗传算法的交叉和变异算子,改进局部解的搜索策略与搜索能力,即根据给定概率对当前解做交叉或变异运算,以获得更好的局部解,进而提出BeeGenP启发式求解算法,用于求解平面离散型p-center问题。通过构造测试数据,对所设计的算法进行了有效性验证,实验结果表明,BeeGenP算法与现有的M-ABC算法相比,算法的局部解搜索能力得到了提升,增加了搜索空间的多样性,在相同迭代次数约束下所得到的解的质量更高,而趋近收敛于最优解时的迭代次数则有较大幅度的降低。
包敏泽, 胡秀婷, 谢玉莹, 蒋波. 基于人工蜂群算法的p-center问题求解算法[J]. 计算机工程与科学.
BAO Min-ze, HU Xiu-ting, XIE Yu-ying, JIANG Bo.
A p-center problem solving algorithm
based on artificial bee colony algorithm
[J]. Computer Engineering & Science.