J4 ›› 2016, Vol. 38 ›› Issue (04): 792-799.
吴永亮,郑伟涛,郭芳琳,闫光辉
WU Yongliang,ZHENG Weitao,GUO Fanglin,YAN Guanghui
摘要:
社区结构可以为网络的其他分析挖掘提供中观尺度的分析视角,在大规模复杂网络的各项研究中是一项非常重要而基础的工作。社区的重叠是真实世界网络中常见的一种现象,重叠社区结构可以更准确地描述网络中真实的结构信息,因此,复杂网络重叠社区发现具有更加突出的现实意义。在综合对比分析了当前主要的重叠社区发现算法的基础上,结合信息论的相关知识,给出了一种基于信息论的社区定义,并进一步借鉴信息传播理论,从单个节点对关于某种主题的信息的掌握程度的角度出发提出了一种复杂网络重叠社区结构发现算法。基于实际数据集的相关实验表明,与传统的社区定义和社区发现算法相比,本算法发现的重叠社区从内容角度来看具有更加明确的实际意义,并且具有较低的时间复杂度。