• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 人工智能与数据挖掘 • 上一篇    下一篇

一种基于局部扩展优化的重叠社区发现算法

李慧,杨青泉,王慧慧   

  1. (首都师范大学教育技术系,北京 100048)
  • 收稿日期:2018-06-01 修回日期:2018-08-13 出版日期:2018-12-25 发布日期:2018-12-25
  • 基金资助:

    国家社会科学基金(17BXW069)

An overlapping community detection algorithm
 based on local expansion optimization

LI Hui,YANG Qingquan,WANG Huihui     

  1. (Department of Educational Technology,Capital Normal University,Beijing 100048,China)
     
  • Received:2018-06-01 Revised:2018-08-13 Online:2018-12-25 Published:2018-12-25

摘要:

挖掘复杂网络的重叠社区结构对研究复杂系统具有重要的理论和实践意义。提出一种基于局部扩展优化的重叠社区识别算法。
首先基于网络节点的聚集系数筛选种子节点,选取不相关的、局部聚集系数大的种子作为初始社区;然后采用贪心策略扩展初始社区,得到局部连接紧密的自然社区;最后检测并合并相似的社区,获得高覆盖率的重叠社区结构。在人工生成网络和真实网络数据集上的实验结果表明,与现有的基于局部扩展的代表性重叠社区发现算法相比,所提算法能在稀疏程度不同的网络上发现更高质量的重叠社区。

 

关键词: 复杂网络, 重叠社区发现, 局部扩展, 结构适应度

Abstract:

Overlapping community structure detection bears both theoretical and practical significance for the study of complex systems. We propose an overlapping community detection algorithm based on local expansion optimization. Firstly, a group of irrelevant seeds with large clustering coefficient are selected as initial communities according to the clustering coefficient of network nodes. Then, the initial communities are expanded into tightlyconnected local communities by a greedy strategy. Finally, similar communities are merged and overlapping community structures with high cover rate are obtained. Experimental results on both synthetic and realworld networks show that compared with other representative local expansion methods, the proposed algorithm can efficiently detect overlapping communities of higher quality in the networks with different sparsity degrees.

Key words: complex network, overlapping community detection, local expansion, structural fitness