王鹏,郭朝勇,刘红宁
WANG Peng,GUO Chao-yong,LIU Hong-ning
摘要:
为解决枪弹外观缺陷自动分类问题,提出了一种基于支持向量机的枪弹外观缺陷自动识别与分类模型。首先针对枪弹表面缺陷的图像特点,从几何、灰度、纹理三方面进行了特征提取,在此基础上建立了基于支持向量机的枪弹外观缺陷分类模型,并对特征参数进行了优选;研究了支持向量机中惩罚系数和核函数参数对分类器性能的影响;通过实验与基于BP神经网络的枪弹外观缺陷分类器进行了比较,结果表明,在小样本下,基于支持向量机的枪弹外观缺陷分类器性能更好。