• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

目标跟踪算法的并行优化

陈伟1,祝恩1,刘天航1,殷建平1,邱明辉2   

  1. (1.国防科学技术大学计算机学院,湖南 长沙 410073;2.解放军总医院医学信息情报所,北京 100039)
  • 收稿日期:2016-07-10 修回日期:2016-09-09 出版日期:2016-11-25 发布日期:2016-11-25
  • 基金资助:

    国家自然科学基金(61170287,61232016)

Parallel optimization of target tracking algorithms

CHEN Wei1,ZHU En1,LIU Tianhang1,YIN Jianping1,QIU Minghui2   

  1. (1.College of Computer,National University of Defense Technology,Changsha 410073;
    2.Medical Informatics Institute of Chinese PLA General Hospital,Beijing 100039,China)
  • Received:2016-07-10 Revised:2016-09-09 Online:2016-11-25 Published:2016-11-25

摘要:

目标跟踪是计算机视觉领域一个重要的研究方向,近年来学者提出了众多优秀的目标跟踪算法,但许多算法的低实时性制约了其在应用场景中的有效性。针对这些算法,提出了一个通用的跟踪模型,并针对此模型提出了一个可行的并行优化方案。之后使用SCM算法验证了所提出的并行优化方案。在四核CPU的环境下,并行后的SCM算法相比于未并行的算法取得了348倍的并行加速比,并且比原算法Matlab+C程序的运行速度快了约30倍,这说明了所提出的并行优化方案的有效性。
 

关键词: 目标跟踪, 跟踪模型, 并行优化

Abstract:

Object tracking is an important research area in computer vision. Researchers have proposed a number of excellent object tracking algorithms in recent years. However, the poor realtime performance of these algorithms restricts its effectiveness in application scenarios. Based on these algorithms, we design a general tracking model and propose a feasible parallel optimization scheme for the model. We also use the sparsitybased collaborative model (SCM) algorithm to validate the proposed scheme. In a fourcore CPU environment, the parallel algorithm achieves a speedup of 3.48 times compared with the sequential algorithm, and it is about 30 times faster than the MATLAB+C program of the original algorithms, thus verifying the effectiveness of the proposed parallel optimization scheme.

Key words: object tracking, tracking model, parallel optimization