• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

基于QR分解重构虚拟样本的人脸识别算法

郭艳君,许道云,秦永彬   

  1. (贵州大学计算机科学与技术学院,贵州 贵阳 550025)
  • 收稿日期:2016-07-10 修回日期:2016-09-15 出版日期:2016-11-25 发布日期:2016-11-25
  • 基金资助:

    国家自然科学基金(61262006,61540050);贵州省重大应用基础研究项目(黔科合JZ字[2014]2001号);贵州省科技厅联合基金(黔科合LH字[2014]7636号)

A face recognition algorithm  based on QR
decomposition and reconstruction of virtual samples 

GUO Yanjun,XU Daoyun,QIN Yongbin   

  1. (School of Computer Science and Technology,Guizhou University,Guiyang 550025,China)
  • Received:2016-07-10 Revised:2016-09-15 Online:2016-11-25 Published:2016-11-25

摘要:

一直以来,小样本问题是人脸识别应用面临的一大难题。针对在实际人脸识别过程中存在的样本不足的问题,首次提出基于QR分解重构虚拟训练样本的算法。该算法使用Q与R的部分信息构造出与原始人脸图像具有一定差异性的虚拟样本,增加了人脸图像更多可能性变化的有效特征,扩大了训练样本集,然后对原始样本和虚拟重构样本协同表示的结果进行加权融合,选取最优权重组合,调整原始样本与虚拟样本对结果的影响比重,得到正确识别率。以ORL、FERET和AR三大人脸数据库对算法进行实验验证。实验结果表明,此算法能够取得较高的识别准确率。
 

关键词: 人脸识别, QR分解, 虚拟样本, 协同表示

Abstract:

The small sample problem has been a major challenge for face recognition applications for a long time. Concerning the insufficient sample problem in the face recognition process, we propose a face recognition algorithm based on QR decomposition and reconstruction of virtual training samples. We use partial Q and R information to construct virtual samples which have certain difference from the original face image, thus more effective characteristics of the face image that likely change with emotions and illumination are increased, and the training sample sets are expanded. Then we perform weighting fusion on the collaborative representations of the original samples and virtual samples, select the optimal weight combination, adjust the proportions of the original sample and virtual sample which can impact on the results, and obtain the correct recognition rate. Experiments on the ORL, FERET and AR face data sets show that the proposed algorithm can achieve a higher recognition accuracy.
 

Key words: face recognition, QR decomposition, virtual samples;collaborative representation