• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (09): 1611-1620.

• 图形与图像 • 上一篇    下一篇

基于多对抗性鉴别网络的人脸活体检测

任拓1,闫玮2,况立群1,谢剑斌1,谌钟毓1,高峰1,郭锐1,束伟3,谢昌颐4   

  1. (1.中北大学大数据学院,山西 太原 030051;2.国防科技大学电子科学学院,湖南 长沙 410073;
    3.辽宁科技大学电子与信息工程学院,辽宁 鞍山 114051;
    4.墨尔本大学医学、牙科和健康科学学院,澳大利亚 墨尔本 3010)

  • 收稿日期:2022-06-13 修回日期:2022-09-15 接受日期:2023-09-25 出版日期:2023-09-25 发布日期:2023-09-12
  • 基金资助:
    国家自然科学基金(62106238);山西省回国留学人员科研资助项目(2020-113);山西省科技成果转化引导专项(202104021301055)

Face liveness detection based on multi-adversarial discrimination network

REN Tuo1,YAN Wei2,KUANG Li-qun1,XIE Jian-bin1,CHEN Zhong-yu1,GAO Feng1,GUO Rui1,SHU Wei3,XIE Chang-yi4   

  1. (1.School of Data Science and Technology,North University of China,Taiyuan  030051,China;
    2.College of Electronic Science and Technology,National University of Defense Technology,Changsha  410073,China;
    3.School of Electronic and Information Engineering,University of Science and Technology Liaoning,Anshan 114051,China;
    4.Faculty of Medicine,Dentistry and Health Sciences,The University of Melbourne,Melbourne 3010,Australia)
  • Received:2022-06-13 Revised:2022-09-15 Accepted:2023-09-25 Online:2023-09-25 Published:2023-09-12

摘要: 人脸活体检测是人脸识别系统安全性保证的关键,其中,解纠缠学习方法可以有效解决人脸活体检测中泛化数据集的问题,但是现有的解纠缠学习方法往往将整幅人脸图像作为输入,解析出伪造痕迹元素,会忽略伪造痕迹的局部细节问题。针对这一问题,改进现有的伪造痕迹解纠缠网络,提出多对抗性鉴别网络模型,在鉴别器中设计主鉴别器和区域鉴别器,引入人脸遮罩模块,生成人脸皮肤、五官遮罩蒙版,整合人脸局部信息,使生成器拟合的图像更接近数据集中人脸图像的分布,同时解离出加强版的伪造痕迹。提出的多对抗性鉴别网络有效地增强了伪造人脸图像的伪造痕迹信息并提高了人脸活体检测的准确率。具体来说,该网络模型在OULU-NPU数据集的2个实验中的检测错误率仅为0.8%和1.4%,相比STDN错误率显著降低,同时在Idiap Replay-Attack数据集上也达到了较好的检测效果。为了验证该网络模型的可迁移性,在NUAA数据集和Idiap Replay-Attack数据集上进行跨域实验,达到了不错的效果。

关键词: 人脸识别, 活体检测, 生成对抗网络, 解纠缠表示学习

Abstract: Face liveness detection is a key factor in ensuring the security of face recognition systems. In particular, disentangled learning methods can effectively address the problem of generalizing datasets in face liveness detection. However, existing disentangled learning methods often take the entire face image as input and parse out forged trace elements, ignoring the issue of local details of forged traces. To address this issue, this paper improves the existing forgery trace disentanglement network and proposes a multi-adversarial discriminative network model. The discriminator is designed with a primary discriminator and a regional discriminator. A facial mask module is introduced to generate facial skin and feature masks. Local facial information is integrated to make the generated images more closely resemble the distribution of face images in the dataset, while also disentangling an enhanced version of the forgery trace. The proposed multi-adversarial discriminative network effectively enhances the effect of forgery trace on forged face images and improves the accuracy of face liveness detection. Specifically, the detection error rate of our model on the OULU-NPU dataset in two experiments is only 0.8% and 1.4%, significantly lower than that of the STDN. At the same time, good detection results are achieved on the Idiap Replay-Attack dataset. To verify the transferability of our method, cross-domain experiments on the NUAA dataset and the Idiap Replay-Attack dataset also achieves good results.


Key words: face recognition, liveness detection, generative adversarial network, disentangled representation learning