• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

抵抗SPA攻击的分段Montgomery标量乘算法

李杨1,2,王劲林1,曾学文1,叶晓舟1   

  1. (1.中国科学院声学研究所国家网络新媒体工程技术研究中心,北京 100190;
    2.中国科学院大学,北京 100049)
  • 收稿日期:2015-10-10 修回日期:2015-12-23 出版日期:2017-01-25 发布日期:2017-01-25
  • 基金资助:

    中国科学院战略性先导科技专项课题(XDA06010302);中国科学院声学研究所知识创新工程项目(Y154191601)

     

A segmented Montgomery scalar multiplication algorithm
with resistance to simple power analysis SPA attacks

LI Yang 1,2,WANG Jinlin1,ZENG Xuewen1,YE Xiaozhou1   

  1. (1.National Network New Media Engineering Research Center,Institute of Acoustics,Chinese Academy of Sciences,Beijing 100190;
    2.University of Chinese Academy of Sciences,Beijing 100049,China)
     
     
  • Received:2015-10-10 Revised:2015-12-23 Online:2017-01-25 Published:2017-01-25

摘要:

基于Akishita 在Montgomery形式椭圆曲线上计算双标量乘kP+lQ的思想,提出了一种计算三标量乘kP+lQ+tR的新算法,使运算量减少了约23%。在上述算法基础上提出一种椭圆曲线上分段计算标量乘bP的方法,通过预计算少量点,将计算bP转化为计算kP+lQ或kP+lQ+tR,并使用边信道原子化的方法使其可以抵抗简单能量分析(SPA)攻击。最后使用Magma在二进制域上对分段算法仿真,结果显示二分段算法计算速度最快,三分段算法其次,在效率上均比原始Montgomery算法提升很大。
 

关键词: 椭圆曲线, 标量乘, Montgomery算法, 分段, SPA

Abstract:

Based on the Akishita’s idea of computing scalar multiplication kP+lQ on elliptic curve with Montgomery form, we propose a new algorithm to reduce the computation for scalar multiplication kP+lQ+tR by 23%.We then propose a subsection method on the basis of the above two algorithms to enhance the efficiency of computing scalar multiplication bP on elliptic curve by converting bP to kP+lQ or kP+lQ+tR, which combines the concept of sidechannel atomicity to resist SPA attacks. Simulations on Magma demonstrate that the twosegmentation algorithm is the fastest and the threesegmentation algorithm is the second, and they can both greatly improve the efficiency in comparison with the original Montgomery algorithm.

Key words: elliptic curve, scalar multiplication, Montgomery algorithm, segmentation, SPA