• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

一种改进的SVM算法在乳腺癌诊断方面的应用

吴辰文,李长生,王伟,梁靖涵,闫光辉   

  1. (兰州交通大学电子与信息工程学院,甘肃 兰州 730070)
  • 收稿日期:2015-09-06 修回日期:2015-12-07 出版日期:2017-03-25 发布日期:2017-03-25
  • 基金资助:

    国家自然科学基金(61163010);甘肃省自然科学基金(1308RJZA111);兰州市科技计划(2015-2-99)

Application of an improved support vector machine
algorithm in the diagnosis of breast cancer

WU Chen-wen,LI Chang-sheng,WANG Wei,LIANG Jing-han,YAN Guang-hui   

  1. (School of Electronics and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)
  • Received:2015-09-06 Revised:2015-12-07 Online:2017-03-25 Published:2017-03-25

摘要:

针对计算机辅助诊断(CAD)技术在乳腺癌疾病诊断准确率的优化问题,提出了一种基于随机森林模型下Gini指标特征加权的支持向量机方法(RFG-SVM)。该方法利用了随机森林模型下的Gini指数衡量各个特征对分类结果的重要性,构造具有加权特征向量核函数的支持向量机,并在乳腺癌疾病诊断方面加以应用。经理论分析和实验数据验证,相比于传统的支持向量机(SVM),该方法提升了分类预测的性能,其结果与最新的方法相比也具有一定的竞争力,而且在医疗诊断应用方面更具优势。
 

关键词: 支持向量机, 特征加权, 随机森林, 计算机辅助诊断

Abstract:

To optimize the accuracy of computer aided diagnosis (CAD) technology in the diagnosis of breast cancer, we propose a new support vector machine algorithm   based on the feature weighting of Gini index under the random forest model (RFG-SVM). The algorithm uses the Gini index under the random forest model to measure the impact of each feature on the classification results, and to build a support vector machine with the weighted feature vector kernel function, which is then applied to the diagnosis of breast cancer. Theoretical analysis and experimental data tests show that the proposed algorithm has higher classification accuracy than the traditional SVM and is more competitive than the state-of-the-art methods in medical diagnostics.  
 

Key words: SVM, feature weighting, random forest, computer-aided diagnosis (CAD)