程昳1,2,刘勇3
CHENG Yi1,2,LIU Yong3
摘要:
现有的混合信息系统知识发现模型涵盖的数据类型大多为符号型、数值型条件属性及符号型决策属性,且大多数模型的关注点是属性约简或特征选择,针对规则提取的研究相对较少。针对涵盖更多数据类型的混合信息系统构建一个动态规则提取模型。首先修正了现有的属性值距离的计算公式,对错层型属性值的距离给出了一种定义形式,从而定义了一个新的混合距离。其次提出了针对数值型决策属性诱导决策类的3种方法。其后构造了广义邻域粗糙集模型,提出了动态粒度下的上下近似及规则提取算法,构建了基于邻域粒化的动态规则提取模型。该模型可用于具有以下特点的信息系统的规则提取:
(1)条件属性集可包括单层符号型、错层符号型、数值型、区间型、集值型、未知型等;
(2)决策属性集可包括符号型、数值型。利用UCI数据库中的数据集进行了对比实验,分类精度表明了规则提取算法的有效性。