• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 人工智能与数据挖掘 • 上一篇    下一篇

基于异质用户网络嵌入的服务推荐方法研究

吴浩1,王晓晨1,曾诚1,2,何鹏1,2   

  1. (1.湖北大学计算机与信息工程学院,湖北 武汉 430072;2.湖北省教育信息化工程技术研究中心,湖北 武汉 430072)
  • 收稿日期:2018-09-27 修回日期:2018-12-10 出版日期:2019-07-25 发布日期:2019-07-25
  • 基金资助:

    湖北省技术创新重大专项(2016CFB309);湖北省教育厅青年人才项目(Q20171008);湖北大学自科青年基金(201507)

Service recommendation based on
heterogeneous user network embedding

WU Hao1,WANG Xiaochen1,ZENG Cheng1,2,HE Peng1,2
 
  

  1. (1.School of Computer and Information Engineering,Hubei University,Wuhan 430072;
    2.Hubei Engineering Research Center of Education Informationization,Wuhan 430072,China)

     
  • Received:2018-09-27 Revised:2018-12-10 Online:2019-07-25 Published:2019-07-25

摘要:

服务推荐过程中,为充分利用用户标签标注关系与用户的社交关系信息,提升推荐结果的准确性,提出一种基于异质用户网络嵌入的方法,通过将用户节点映射为一个低维的向量,再利用得到的用户向量进行协同推荐。在公开数据集Delicious上进行了实证分析,实验结果表明,相对已有的2个方法,该方法的推荐精度可分别提高18.1%和16.6%,且发现在学习用户表征向量时,节点之间的直接关系与“朋友的朋友”关系对表示用户节点结构信息同等重要;同时,推荐过程中为目标用户返回的相似用户在25个最为适宜。
 
 

关键词: 网络嵌入, 异质信息网络, 协同过滤, 服务推荐

Abstract:

In order to make full use of user’s tagging and social relationship information and improve the accuracy of recommendation results in service recommendation, we propose a new recommendation method based on heterogeneous user network embedding. It maps a user node to a lowdimensional vector, and then utilizes the obtained user vector to carry out collaborative recommendation. We verify the method on Delicious, a public dataset. Experimental results show that our method outperforms the two existing methods, and the recommended accuracy is increased by 18.1% and 16.6% respectively. Furthermore, the results also suggest that the direct relationship between nodes is as important as the "friends of friends" relationship in representing user node structural information when learning the user representation vector. At the same time, it is most suitable to return top 25 similar users for the target user in the recommendation process.

 

Key words: network embedding, heterogeneous information network, collaborative filtering, service recommendation