肖新凤1,2,李石君2,余伟2,刘杰2,刘倍雄1
XIAO Xinfeng1,2,LI Shijun2,YU Wei2,LIU Jie2,LIU Beixiong1
摘要:
目前机器翻译主要对印欧语系进行优化与评测,很少有对中文进行优化的,而且机器翻译领域效果最好的基于注意力机制的神经机器翻译模型—seq2seq模型也没有考虑到不同语言间语法的变换。提出一种优化的英汉翻译模型,使用不同的文本预处理和嵌入层参数初始化方法,并改进seq2seq模型结构,在编码器和解码器之间添加一层用于语法变化的转换层。通过预处理,能缩减翻译模型的参数规模和训练时间20%,且翻译性能提高0.4 BLEU。使用转换层的seq2seq模型在翻译性能上提升0.7~1.0 BLEU。实验表明,在规模大小不同的语料英汉翻译任务中,该模型与现有的基于注意力机制的seq2seq主流模型相比,训练时长一致,性能提高了1~2 BLEU。