计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (09): 1693-1701.
刘国岐,何廷年,荣艺煊,李卓然
LIU Guo-qi,HE Ting-nian,RONG Yi-xuan,LI Zhuo-ran
摘要: 连续兴趣点(POI)推荐是基于地理位置社交网络(LBSN)的重要应用之一,已有研究提出采用兴趣点信息和时空信息进行推荐的方法,但没有充分地利用相关辅助信息,因此无法解决用户短轨迹签到导致的信息不足问题。针对这些问题,提出一种整合好友关系和自注意力的兴趣点推荐模型ATFR。该预测模型包含3个部分:首先,通过图嵌入的方法得到好友关系的向量表示并利用GRU得到用户兴趣偏好向量;其次,利用自注意力机制对用户签到序列的顺序影响和社交影响建模,有选择地关注签入序列中相关的历史签入记录;最后,根据兴趣点排序列表进行未来兴趣点推荐。在2个真实数据集上的实验结果表明ATFR模型有更好的表现,可以用来提高网站应用和个性化兴趣点推荐服务的质量。