• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 图形与图像 • 上一篇    下一篇

像素级的皮肤分割与面色分级

吴从中1,侯国松1,丁正龙2,许良凤1,詹曙1   

  1. (1.合肥工业大学计算机与信息学院,安徽  合肥 230601; 2.安徽信息工程学院,安徽 芜湖 241000)
  • 收稿日期:2019-04-03 修回日期:2019-05-24 出版日期:2019-11-25 发布日期:2019-11-25
  • 基金资助:

    国家自然科学基金(61371156)

Pixel-level skin segmentation and face color grading

WU Cong-zhong1,HOU Guo-song1,DING Zheng-long2,XU Liang-feng1,ZHAN Shu1   

  1. (1.School of Computer Science and Information Engineering,Hefei University of Technology,Hefei 230601;
    2.Anhui Institute of Information Technology,Wuhu 241000,China)
     
  • Received:2019-04-03 Revised:2019-05-24 Online:2019-11-25 Published:2019-11-25

摘要:

皮肤是人体最大的器官,面色相对于人体其他生物属性具有更便捷、更稳定的特性。因此,设计一个完整有效的面色分级系统是非常有意义的。本文中,面色分级系统被分为皮肤分割和面色分级2部分。针对皮肤分割任务,在生成对抗网络框架下搭建了一个多尺度特征融合网络,相对于传统的语义分割网络,本文的分割模型充分地利用了每一层特征图的信息。在面色分级实验中,首先在归一化rgb、HSV和Lab颜色空间下使用1 000幅图像分别训练了支持向量机(SVM)和BP神经网络分类器,128幅皮肤图像被用作测试集,正确率在73%~76%;之后将颜色特征与皮肤区域纹理特征融合进行学习,使用SVM分类的正确率为85%,使用BP神经网络分类的正确率达到了91%。
 

关键词: 多尺度特征融合网络, 生成对抗网络, 皮肤分割, 面色分级

Abstract:

Skin is the largest organ in the human body, and skin color is more convenient and stable than other biological properties of the human body. Therefore, it is very meaningful to design an effective skin color grading system. In this paper, the skin color grading system is divided into two parts: skin segmentation and skin color grading. For the skin segmentation,a multi-scale feature fusion network is built under the framework of the generative adversarial network. Compared with the traditional semantic segmentation networks, the proposed segmentation model makes full use of the information of each layer's feature map. In the face color grading experiment, the SVM classifier and the BP neural network are trained with 1 000 images in the normalized rgb, HSV, and Lab color spaces. 128 skin images are used as test sets, and the correct rate is between 73% and 76%. Then,the color features are combined with the LBP texture features of the skin region to do the learning. The correct rate of the SVM classifier is 85%, and the correct rate of the BP neural network is 91%.
 

Key words: multi-scale feature fusion network, generative adversarial network, skin segmentation, face color grading