• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 人工智能与数据挖掘 • 上一篇    下一篇

基于Vanet的无人驾驶动态路径规划算法研究

曾鹏,万华森,王一霖   

  1. (昆明理工大学交通工程学院,云南 昆明 650500)
  • 收稿日期:2018-11-05 修回日期:2019-03-05 出版日期:2019-11-25 发布日期:2019-11-25
  • 基金资助:

    国家重点研发计划(2018YFB1600500)

An driverless dynamic path
planning algorithm based on Vanet

ZENG Peng,WAN Hua-sen,WANG Yi-lin   

  1. (School of Traffic Engineering,Kunming University of Science and Technology,Kunming 650500,China)
  • Received:2018-11-05 Revised:2019-03-05 Online:2019-11-25 Published:2019-11-25

摘要:

随着智能交通的发展,无人驾驶成为未来颠覆传统出行的又一重要交通工具,为适应无人驾驶大规模复杂的交通环境,为无人驾驶导航规划提出了动态双向A*算法。车载自组网是未来无人驾驶的一个重要发展方向,为检验算法在车载自组网环境下的性能表现,采用OMNeT++与SUMO双向耦合,在开源框架Veins基础上进行联合仿真实验,证明在不同交通密度的交通状态中,在Vanet环境下动态双向A*算法相比在无Vanet环境下传统双向A*算法,能更有效地缩短行程时间,提高出行效率。

关键词: 无人驾驶, 动态路径规划, 双向耦合, 联合仿真, 行程时间

Abstract:

With the development of intelligent transportation, driverless is another important means that will utterly change traditional travels in the future. In order to adapt to the large-scale and complex traffic environment of driverless, we propose a dynamic bidirectional A* algorithm for driverless  navigation planning. On the basis of this, theoretical simulations under different traffic flow conditions are realized, and the feasibility of the algorithm is verified. The vehicular self-organizing network is an important development direction of driverless in the future. In order to verify the performance of the algorithm in the vehicular self-organizing network environment, we adopt the OMNeT++ and SUMO bidirectional coupling, and perform joint simulation experiments on the open source framework Veins. In the traffic states with different traffic densities, the path planned by the dynamic bidirectional A* algorithm in the Vanet environment can reduce travel time and improve travel efficiency more effectively than that of the traditional bidirectional A* algorithm.
 

Key words: driverless, dynamic path planning, bidirectional coupling, joint simulation, travel time