• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 计算机网络与信息安全 • 上一篇    下一篇

基于信息传播影响因素的边重要性度量方法

徐曼1,2,3,鲁富荣1,2,3,马国帅1,2,3,钱宇华1,2,3   

  1. (1.山西大学大数据科学与产业研究院,山西 太原 030006;
    2.计算智能与中文信息处理教育部重点实验室(山西大学),山西 太原 030006;
    3.山西大学计算机与信息技术学院,山西  太原 030006)
     
  • 收稿日期:2019-07-19 修回日期:2019-09-30 出版日期:2020-01-25 发布日期:2020-01-25
  • 基金资助:

    国家自然科学基金(61672332);山西省拔尖创新人才支持计划;山西省三晋学者;山西省回国留学人员科研项目(2017023)

An edge importance measurement method based
on information dissemination characteristics

XU Man1,2,3,LU Fu-rong1,2,3,MA Guo-shuai1,2,3,QIAN Yu-hua1,2,3   

  1. (1.Research Institute of Big Data Science and Industry,Shanxi University,Taiyuan 030006;
    2.Key Laboratory of Computational Intelligence and Chinese Information Processing(Shanxi University),
    Ministry of Education,Taiyuan 030006;
    3.School of Computer and Information Technology,Shanxi University,Taiyuan 030006,China)
     

     
  • Received:2019-07-19 Revised:2019-09-30 Online:2020-01-25 Published:2020-01-25

摘要:

在信息传播中,边的重要性度量是一个非常重要的研究问题。边是信息传播的载体,不同位置的边具有不同的信息负载和传播能力。移除一些对传播有重要影响的边对遏制谣言的传播和公共信息的传播最大化等有重要意义。信息的传播易受传播者、受传者、传播渠道和传播环境等影响。基于这些观察,通过综合考虑影响信息传播的多种因素,提出一种基于信息传播影响因素的边重要性度量方法ISM。在9个真实网络数据集上,ISM与4个经典的边重要性方法的Jaccard系数、桥度指数、介数中心性和可达性指数进行了比较。实验结果表明,该方法在网络连通性和扩散动态过程中,对于重要边的识别均优于其他常用方法。

关键词: 复杂网络, 信息传播, 边的重要性, 网络连通

Abstract:

Edge importance measurement is a very important issue in information dissemination. Edge is the carrier of information dissemination, and edges at different locations have different information loads and propagation capabilities. Removing some edges that have a significant impact on communication is of great importance in curbing the spread of rumors and maximizing the dissemination of public information. Information dissemination is susceptible to factors such as communicators, communication channels and communication environment. Based on these observations, by comprehensively considering various factors affecting information dissemination, this paper proposes an edge importance measurement method based on information dissemination characteristics: ISM (Information Spreading Model). On nine real network datasets, ISM is compared with four classical edge importance methods such as Jaccard coefficient, Bridgeness index, Betweenness centrality, and Reachability index. The experimental results show that the proposed method is superior to other commonly used methods in the process of network connectivity and diffusion dynamics.
 

Key words: complex network, information dissemination, edge importance, network connectivity