• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (01): 125-133.

• 图形与图像 • 上一篇    下一篇

基于无监督生成对抗网络的人脸素描图像真实化

陈金龙,刘雄飞,詹曙


  

  1. (合肥工业大学计算机与信息学院,安徽 合肥 231009)
  • 收稿日期:2020-03-07 修回日期:2020-04-28 接受日期:2021-01-25 出版日期:2021-01-25 发布日期:2021-01-22
  • 基金资助:
    国家自然科学基金(61371156)

Unsupervised learning for face sketch-photo synthesis using generative adversarial network

CHEN Jin-long,LIU Xiong-fei,ZHAN Shu   

  1. (School of Computer and Information,Hefei University of Technology,Hefei 231009,China)
  • Received:2020-03-07 Revised:2020-04-28 Accepted:2021-01-25 Online:2021-01-25 Published:2021-01-22

摘要: 对于人脸识别验证的研究带动了执法机构和数字娱乐行业将素描转化为真实人脸图像的需求和兴趣。到目前为止,由于网络训练阶段缺乏配对的数据,加上素描与真实照片之间存在着明显的模态差异,现有的方法仍然存在着不可解决的局限性。利用跨域语义一致性损失使输入和输出保持相同的语义信息,并用感知损失替换像素级的循环一致性损失以生成高分辨率图像。将PGGAN的生成器与生成对抗网络的损失函数一起训练以生成目标域真实图像,循环一致性损失则驱动同域图像保持一致。基于2个开源数据集的实验说明了所提模型在主观评价和客观标准上的有效性。

关键词: 异质人脸图像转换, 无监督学习, 生成对抗网络

Abstract: The research in verification of human face issue has impelled the demand and interest of law enforcement agencies and digital entertainment industry in transferring sketches to photo-realistic images. However, sketch-photo synthesis remains a significant challenging problem despite the rapid development of neural networks in image-to-image generation tasks. So far, existing approaches still have inextricable limitations due to the lack of paired data in the training stage and the fact of the striking differences between sketch and photo. To solve this problem, a new framework is proposed to translate face sketches to photo-realistic images in an unsupervised fashion. Compared with current unsupervised image-to-image translation methods, the network leverages an additional semantic consistency loss to keep the input semantic information in the output, and replaces the pixel-wise cycle-consistency with perceptual loss to generate sharper images for face sketch-photo synthesis. This network also employs PGGAN's generator and train it with a GAN loss for realistic output and a cycle consistency loss for driving the same input and output to remain constant. Experiments on two open source data sets verify the effectiveness of our proposal in subjective evaluation and objective standards.



Key words:  , face sketch-photo synthesis, unsupervised learning, generative adversarial network,