• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (07): 1264-1272.

• 图形与图像 • 上一篇    下一篇

多尺度深度监督的高度近视萎缩病变分割方法

曾增峰,环宇翔,邹卓,郑立荣   

  1. (复旦大学信息科学与工程学院微纳系统中心,上海 201203)
  • 收稿日期:2020-03-26 修回日期:2020-07-12 接受日期:2021-07-25 出版日期:2021-07-25 发布日期:2021-08-17
  • 基金资助:
    A segmentation method of high myopia atrophy lesions based on multi-scale deep supervision

A segmentation method of high myopia atrophy lesions based on multi-scale deep supervision

ZENG Zeng-feng,HUAN Yu-xiang,ZOU Zhuo,ZHENG Li-rong   

  1. (Center of Micro Nano System,School of Information Science and Technology,Fudan University,Shanghai 201203,China)

  • Received:2020-03-26 Revised:2020-07-12 Accepted:2021-07-25 Online:2021-07-25 Published:2021-08-17

摘要: 为提升眼底图像的高度近视萎缩病变分割精度,针对不同个体的眼底图像质量良莠不齐及因萎缩病变与相邻组织之间边界较为模糊等引起分割困难的问题,提出具有多尺度深度监督思想的高度近视萎缩病变分割方法。首先开发优化算法使得眼底图像组织结构清晰、风格统一,降低复杂特征的区分难度。由于利用V-Net只能够得到较低的分割精度,因此,通过融合高层与低层的特征形成多尺度特征学习的MS-V-Net,能够提取不同尺度图像中语义信息。更为重要的是,最终对MS-V-Net每个多尺度模块的深度监督形成紧密监督的MSS-V-Net,与原始 V-Net 分割方法相比,提高了网络对重要语义信息的判别性及泛化性能力。实验结果表明,本文方法的Dice盒图呈现出异常值变少,中位数变大,盒子长度变短,上下间隔变小,盒外的2条线变短的趋势,说明有效提升了高度近视萎缩病变图像的分割精度。

关键词: 深度学习, 多尺度深度监督, 高度近视, 图像分割

Abstract: In order to improve the segmentation accuracy of atrophic lesions of high myopia in fundus images, aiming at the problems of poor quality of the fundus images of different individuals and the difficulty of segmentation due to the blurred border between atrophic lesions and adjacent tissues, a segmentation algorithm of high myopia atrophy lesions based on multi-scale depth supervision is proposed. Firstly, an optimization algorithm is developed to make the fundus image organization structure clear and uniform in style, reducing the difficulty of distinguishing complex features. Because V-Net can only obtain lower segmentation accuracy, the MS-V-Net that combines multi-level and low-level features to form multi-scale feature learning can extract semantic information in images of different scales. More importantly, the deep supervision of each multi-scale module of MS-V-Net eventually forms a closely supervised MSS-V-Net. Compared with the original V-Net segmentation method, it improves the discrimination of important semantic information by the network and generalization ability. The experimental results show that the Dice box-plot of the proposed method exhibits a trend of fewer outliers, larger median, shorter box length, smaller upper and lower interval, and shorter two lines outside the box, effectively improving the segmentation of atrophic lesion images of high myopia.

Key words: deep learning, multi-scale deep supervision, high myopia, image segmentation