计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (07): 1264-1272.
曾增峰,环宇翔,邹卓,郑立荣
ZENG Zeng-feng,HUAN Yu-xiang,ZOU Zhuo,ZHENG Li-rong
摘要: 为提升眼底图像的高度近视萎缩病变分割精度,针对不同个体的眼底图像质量良莠不齐及因萎缩病变与相邻组织之间边界较为模糊等引起分割困难的问题,提出具有多尺度深度监督思想的高度近视萎缩病变分割方法。首先开发优化算法使得眼底图像组织结构清晰、风格统一,降低复杂特征的区分难度。由于利用V-Net只能够得到较低的分割精度,因此,通过融合高层与低层的特征形成多尺度特征学习的MS-V-Net,能够提取不同尺度图像中语义信息。更为重要的是,最终对MS-V-Net每个多尺度模块的深度监督形成紧密监督的MSS-V-Net,与原始 V-Net 分割方法相比,提高了网络对重要语义信息的判别性及泛化性能力。实验结果表明,本文方法的Dice盒图呈现出异常值变少,中位数变大,盒子长度变短,上下间隔变小,盒外的2条线变短的趋势,说明有效提升了高度近视萎缩病变图像的分割精度。