• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (08): 1429-1442.

• 图形与图像 • 上一篇    下一篇

基于深度学习的小目标检测综述

刘洪江,王懋,刘丽华,吴继冰,黄宏斌   

  1. (国防科技大学信息系统工程重点实验室,湖南 长沙 410073)
  • 收稿日期:2020-09-03 修回日期:2020-11-13 接受日期:2021-08-25 出版日期:2021-08-25 发布日期:2021-08-24

A survey of small object detection based on deep learning

LIU Hong-jiang,WANG Mao,LIU Li-hua,WU Ji-bing,HUANG Hong-bin   

  1. (Key Laboratory of Information System Engineering,National University of Defense Technology,Changsha 410073,China)
  • Received:2020-09-03 Revised:2020-11-13 Accepted:2021-08-25 Online:2021-08-25 Published:2021-08-24

摘要: 目标检测是计算机视觉研究领域的核心问题和最具挑战性的问题之一,随着深度学习技术的广泛应用,目标检测的效率和精度逐渐提升,在某些方面已达到甚至超过人眼的分辨水平。但是,由于小目标在图像中覆盖面积小、分辨率低和特征不明显等原因,现有的目标检测方法对小目标的检测效果都不理想,因此也诞生了很多专门针对提升小目标检测效果的方法。在广泛文献调研的基础上,透彻分析小目标检测困难的原因,从多尺度、特征上下文信息、先验框的设置、交并比匹配策略、非极大抑制方法、损失函数、生成对抗网络和目标检测网络结构等方面,全面地论述了提升小目标检测效果的方法。

关键词: 深度学习, 目标检测, 小目标

Abstract: Object detection is one of the core issues and most challenging problems in the computer vision research field. With the wide application of deep learning technology, the efficiency and accuracy of object detection have gradually improved, which have reached or even exceeded the resolution level of the human eye in some respects. However, due to the small coverage area, low resolution, and insignificant features of the small object in the image, the existing object detection methods are not ideal for the detection of small object. Therefore, many special methods have been created to enhance the detection effect of small object. Based on extensive literatures, this paper thoroughly analyzes the reasons for the difficulty of small object detection, and fully discussed the methods for improving the detection effect of small object from multiple aspects such as multi-scale, feature context information, anchor box settings, intersection over union matching strategy, non-maximum suppression, loss function, generative adversarial network, object detection network structure and so on.

Key words: deep learning, object detection, small object