• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (11): 2017-2026.

• 图形与图像 • 上一篇    下一篇

基于轻量化目标检测网络的RGB-D视觉SLAM系统

戴康佳1,徐慧英1,朱信忠1,黄晓2,李琛1,刘巍1,曹雨淇1,王拔龙1,刘子洋1,陈国强3   

  1. (1.浙江师范大学计算机科学与技术学院(人工智能学院),浙江 金华 321004;
    2.浙江师范大学教育学院(教师教育学院),浙江 金华 321004;3.浙江航天润博测控技术有限公司,浙江 杭州 311200)
  • 收稿日期:2023-07-12 修回日期:2024-01-22 接受日期:2024-11-25 出版日期:2024-11-25 发布日期:2024-11-27
  • 基金资助:
    国家自然科学基金(61976196,62376252);浙江省自然科学基金重点项目(LZ22F030003);国家级大学生创新创业训练计划项目创新训练重点项目(202310345042)

A RGB-D visual SLAM system based on lightweight object detection network

DAI Kang-jia1,XU Hui-ying1,ZHU Xin-zhong1,HUANG Xiao2,LI Chen1,LIU Wei1,CAO Yu-qi1,WANG Ba-long1,LIU Zi-yang1,CHEN Guo-qiang3   

  1. (1.School of Computer Science and Technology(School of Artificial Intelligence),Zhejiang Normal University,Jinhua 321004;
    2.College of Education(College of Teacher Education),Zhejiang Normal University,Jinhua 321004;
    3.Zhejiang Rainbow Aerospace Measurement & Control Technology Co., Ltd., Hangzhou 311200,China)
  • Received:2023-07-12 Revised:2024-01-22 Accepted:2024-11-25 Online:2024-11-25 Published:2024-11-27

摘要: RGB-D SLAM是一种利用深度相机实现同时定位和地图构建的技术。传统的视觉SLAM系统基于对静态环境的假设,然而实际环境中往往存在动态物体,这可能导致SLAM系统的位姿估计出现显著的偏差。针对这一问题,提出了基于轻量化的YOLOv8s目标检测的RGB-D视觉SLAM系统,采用Socket通信方式,将目标检测结果传给SLAM,然后利用Depth Value-RANSAC几何算法剔除检测框内的动态特征点,提高了SLAM系统在动态环境中的定位精度。实验使用TUM数据集进行验证,结果表明,本文系统精度相比ORB-SLAM2有明显提高。与其他SLAM系统相比,本文系统在精度和实时性上有不同程度的改进。

关键词: RGB-D SLAM, 动态场景, 目标检测, 几何约束

Abstract: RGB-D SLAM is a technology that utilizes depth cameras to achieve simultaneous localization and mapping (SLAM). Traditional visual SLAM systems are based on the assumption of a static environment, yet dynamic objects often exist in real-world scenarios, potentially leading to significant deviations in the pose estimation of SLAM systems. To address this issue, this paper proposes a SLAM system based on lightweight YOLOv8s object detection. This system employs Socket communication to transmit object detection results to the SLAM system, which then utilizes the Depth Value-RANSAC geometric algorithm to eliminate dynamic feature points within the detected bounding boxes, thereby enhancing the positioning accuracy of the SLAM system in dynamic environments. The experiments were conducted using the TUM dataset for validation, and the results indicate that the systems accuracy is significantly improved compared to ORB-SLAM2. Compared to other SLAM systems, varying degrees of improvement in accuracy and real-time performance were observed.

Key words: RGB-D SLAM, dynamic scene, object detection, geometric constraint