• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (08): 1444-1454.

• 图形与图像 • 上一篇    下一篇

Bi-YOLO:一种基于YOLOv8n改进的轻量化目标检测算法

刘子洋,徐慧英,朱信忠,李琛,王泽宇,曹雨淇,戴康佳   

  1. (浙江师范大学计算机科学与技术学院(人工智能学院),浙江 金华 321004)
  • 收稿日期:2023-07-11 修回日期:2023-10-09 接受日期:2024-08-25 出版日期:2024-08-25 发布日期:2024-09-02
  • 基金资助:
    国家自然科学基金(62376252,61976196);浙江省自然科学基金重点项目(LZ22F030003);国家级大学生创新训练计划重点项目(202310345042)

Bi-YOLO:An improved lightweight object detection algorithm based on YOLOv8n

LIU Zi-yang,XU Hui-ying,ZHU Xin-zhong,LI Chen,WANG Ze-yu,CAO Yu-qi,DAI Kang-jia   

  1. (School of Computer Science and Technology(School of Artificial Intelligence),
    Zhejiang Normal University,Jinhua 321004,China)
  • Received:2023-07-11 Revised:2023-10-09 Accepted:2024-08-25 Online:2024-08-25 Published:2024-09-02

摘要: 以YOLOv8为代表的单阶段目标检测算法,在骨干网络中有比较明显的优化,但在颈部网络未能高效地融合上下文信息,导致在小目标检测方面存在漏检、错检的问题,并且还存在模型参数量大、计算复杂度高的问题,无法满足端到端的工业部署需求。针对以上问题,引入基于Transformer结构的BiFormer注意力机制,加强对小目标的检测性能,提升算法的精度;引入GSConv模块,在保证算法性能不受到负面影响的前提下减小算法规模。为了平衡BiFormer带来的计算量和参数量的增加,设计了一种名为Bi-YOLO的目标检测算法,以达到轻量化和算法性能的平衡。实验结果表明,Bi-YOLO目标检测算法和YOLOv8n相比,算法精度提高了4.6%,DOTA数据集小目标检测精度提高了2.3%,参数量下降了12.5%。Bi-YOLO有效实现了模型轻量化和性能的平衡,为端到端的工业部署提供了新思路。

关键词: YOLOv8, BiFormer, 轻量化改进, 目标检测, 端到端工业部署

Abstract: The single-stage object detection technology represented by YOLOv8 has significant optimizations in the backbone network, but fails to efficiently integrate contextual information in the neck network, leading to missed and false detections in small object detection. Additionally, the large number of algorithm parameters and high computational complexity make it unsuitable for end-to-end industrial deployment. To address these issues, this paper introduce the BiFormer attention mechanism based on the Transformer structure to enhance the detection performance for small objects and improve the algorithms accuracy. At the same time introduce the GSConv module to reduce the algorithm size while ensuring no adverse impact on its performance, balancing the increase in computational and parametric costs brought by BiFormer. An object detection algorithm named Bi-YOLO is designed to achieve a balance between lightweight and algorithm performance. Experimental results show that compared to YOLOv8n, the Bi-YOLO object detection algorithm improves algorithm accuracy by 4.6%, increases the small object detection accuracy on the DOTA dataset by 2.3%, and reduces the number of parameters by 12.5%. Bi-YOLO effectively achieves a balance between algorithm lightweight and performance, providing a new approach for end-to-end industrial deployment.

Key words: YOLOv8, BiFormer, lightweight improvement, object detection, end-to-end industrial deployment