• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (02): 191-203.

• 高性能计算 • 上一篇    下一篇

单次神经网络结构搜索研究综述

董佩杰,牛新,魏自勉,陈学晖   

  1. (国防科技大学计算机学院,湖南 长沙 410073) 
  • 收稿日期:2021-11-29 修回日期:2022-05-26 接受日期:2023-02-25 出版日期:2023-02-25 发布日期:2023-02-15
  • 基金资助:
    国家自然科学基金(61806216)

Review of one-shot neural architecture search

DONG Pei-jie,NIU Xin,WEI Zi-mian,CHEN Xue-hui   

  1.  (College of Computer Science and Technology,National University of Defense Technology,Changsha 410073,China) 
  • Received:2021-11-29 Revised:2022-05-26 Accepted:2023-02-25 Online:2023-02-25 Published:2023-02-15

摘要: 深度学习技术的快速发展与神经网络结构的创新关系密切。为提升网络结构设计效率,自动化网络结构设计算法—神经网络结构搜索NAS成为近年的研究热点。早期NAS算法通常要对大量候选网络进行训练和评估,带来了巨大的计算开销。通过迁移学习技术,可以加速候选网络的收敛,从而提升网络结构搜索效率。基于权重迁移技术的单次神经网络结构搜索(One-shot NAS)算法以超图为基础,子图之间进行权重共享,提高了搜索效率,但是也面临着协同适应、排序相关性差等挑战性问题。首先介绍了基于权重共享的One-shot NAS算法的相关研究,然后从采样策略、过程解耦和阶段性3个方面对关键技术进行分析梳理,比较分析了典型算法的搜索效果,并对未来的研究方向进行了展望。

关键词: 神经网络结构搜索, 单次神经网络结构搜索, 权重共享, 迁移学习, 深度学习

Abstract: The rapid development of deep learning is closely related to the innovation of neural network structure. To improve the efficiency of network architecture design, Neural Architecture Search (NAS), an automated network architecture design method, has become a research hotspot in recent years. Earlier neural architecture search algorithms in iterative search usually have to train and evaluate a large number of sampled candidate networks, which brings huge computational overhead. Through transfer learning, the convergence of candidate network can be accelerated, thus improving the efficiency of neural architecture search. One-shot NAS based on weight transfer technique is based on super graph, and weights are shared among sub graphs, which improves the search efficiency, but it also faces challenging problems such as co-adaptation and ranking disorder. Firstly, we introduce the research related to one-shot NAS based on weight-sharing, and then analyze the key technologies from three aspects of sampling strategy, process decoupling and phase, compare and analyze the search effect of typical one-shot neural architecture search algorithms, and provide an outlook on the future research direction.


Key words: neural architecture search(NAS);one-shot NAS, weight-sharing;transfer learning;deep learning