• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (03): 545-553.

• 人工智能与数据挖掘 • 上一篇    下一篇

基于RELM的时间序列数据加权集成分类方法

赵林锁1,陈泽2,丁琳琳2,宋宝燕2   

  1. (1.辽宁工程技术大学力学与工程学院,辽宁 阜新 123000;2.辽宁大学信息学院,辽宁 沈阳 110036)
  • 收稿日期:2020-08-26 修回日期:2020-12-07 接受日期:2022-03-25 出版日期:2022-03-25 发布日期:2022-03-24
  • 基金资助:
    国家自然科学基金(62072220,61502215);中国博士后基金(2020M672134)

A weighted ensemble classification method for time series data based on regularized extreme learning machine

ZHAO Lin-suo1,CHEN Ze2,DING Lin-lin2,SONG Bao-yan2   

  1. (1.College of Mechanics and Engineering,Liaoning Technical University,Fuxin 123000;
    2.School of Information,Liaoning University,Shenyang 110036,China)
  • Received:2020-08-26 Revised:2020-12-07 Accepted:2022-03-25 Online:2022-03-25 Published:2022-03-24

摘要: 时间序列数据通常是指一系列带有时间间隔的实值型数据,广泛存在于煤矿、金融和医疗等领域。为解决现有时间序列数据分类问题中存在的含有大量噪声、预测精度低和泛化性能差的问题,提出了一种基于正则化极限学习机(RELM)的时间序列数据加权集成分类方法。首先,针对时间序列数据中所含有的噪声,利用小波包变换方法对时间序列数据进行去噪处理。其次,针对时间序列数据分类方法预测精度低、泛化性能较差的问题,提出了一种基于RELM的加权集成分类方法。该方法通过训练正则化极限学习机(RELM)隐藏层节点数量的方法,有效选取RELM基分类器;通过粒子群优化(PSO)算法,对RELM基分类器的权值进行优化;实现对时间序列数据的加权集成分类。实验结果表明,该分类方法能够对时间序列数据进行有效分类,并提升了分类精度。

关键词: 时间序列数据, 小波包, 正则化极限学习机, 集成分类, 权值优化

Abstract: Time series data usually refer to a series of real value data with time interval, which widely exists in coal mine, finance, medical and other fields. In order to solve the problems of large amount of noise, low prediction accuracy and poor generalization performance in the existing time series data classification problems, a weighted ensemble classification method based on regularized extreme learning machine (RELM) is proposed. Firstly, aiming at the noise contained in time series data, the wavelet packet method is used to denoise time series data. Secondly, in view of the low prediction accuracy and poor generalization performance of time series data classification method, a weighted ensemble classification method based on RELM is proposed. By training the number of hidden layer nodes of RELM, RELM base classifier is effectively selected. Through PSO method, the weight of RELM based classifier is optimized. Finally, weighted ensemble classification is performed on the time series data. Experimental results show that the method can effectively classify time series data and improve the classification accuracy.

Key words: time series data, wavelet packet, regularized extreme learning machine, ensemble classification, weight optimization