• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (12): 2197-2205.

• 图形与图像 • 上一篇    下一篇

LPD-YOLO:轻量级遮挡行人检测模型

梁秀满1,周佳润1,杨若兰2   

  1. (1.华北理工大学电气工程学院,河北 唐山 063210;2.华北理工大学冶金与能源学院,河北 唐山 063210)
  • 收稿日期:2023-03-06 修回日期:2023-05-19 接受日期:2023-12-25 出版日期:2023-12-25 发布日期:2023-12-14

LPD-YOLO:Lightweight obscured pedestrian detection model

LIANG Xiu-man1,ZHOU Jia-run1,YANG Ruo-lan2   

  1. (1.College of Electrical Engineering,North China University of Science and Technology,Tangshan 063210;
    2.College of Metallurgy and Energy,North China University of Science and Technology,Tangshan 063210,China)
  • Received:2023-03-06 Revised:2023-05-19 Accepted:2023-12-25 Online:2023-12-25 Published:2023-12-14

摘要: 在驾驶场景中,针对行人间的遮挡和尺度多变现象导致的检测精度较低、模型参数量过大和难以部署到移动端等问题,提出了一种基于YOLOv5s模型的轻量级实时行人检测模型LPD-YOLO。首先,在特征提取部分采用MES Net替换原主干网络,并在主干网络中嵌入注意力模块SA,增强网络特征提取能力;其次,在特征融合部分采用DS-ASFF结构改进原PANet,使其充分融合不同尺寸的特征图;然后,采用GS卷积代替特征融合网络中的部分标准卷积,在不影响精度的条件下,进一步减少模型参数量和计算量;最后,在预测部分使用OTA标签分配策略结合α-IOU改进原损失函数,加速模型收敛。实验结果表明,该模型相较于YOLOv5s,参数量减少了81.2%,浮点运算量降低了46.3%,模型大小减小了75.8%,检测精度提高了3.3%。单幅图像检测速度达到了13.2 ms,更好地满足了驾驶场景下密集行人的实时检测要求。

关键词: 行人检测, 轻量级网络, YOLOv5s;注意力机制

Abstract: In the driving scenario, due to the occlusion between pedestrians and their scale variations, detection model have low accuracy, high model parameters, and difficulty in deploying to mobile terminals. This paper proposes a lightweight real-time pedestrian detection model, LPD-YOLO, based on the YOLOv5s model. Firstly, in the feature extraction part, the original backbone network is replaced with MES Net (Mish-Enhanced Shuffle Net), and an attention module SA (Shuffle Attention) is embedded in the backbone network to enhance network feature extraction ability. Secondly, in the feature fusion part, the original PANet is improved by using the DS-ASFF structure to fully fuse feature maps of different sizes. Then, standard convolution is replaced with GS convolution in the feature- covergent network part without affecting accuracy, further reducing model parameters and computation. Finally, in the prediction part, the original loss function is improved by using the OTA label assignment strategy combined with α-IOU to accelerate model convergence. Experimental data show that compared with YOLOv5s, LPD-YOLO has 81.2% fewer parameters, 46.3% lower floating-point operation volume, 75.8% smaller model size, and 3.3% higher detection accuracy. The single image detection speed is 13.2 ms, which better meets the real-time detection requirements of dense pedestrians in driving scenarios.

Key words: pedestrian detection, lightweight network, YOLOv5s, attention mechanism