• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (11): 1932-1940.

• 高性能计算 • 上一篇    下一篇

一种改进的基于深度神经网络的偏微分方程求解方法

陈新海1,2,刘杰1,2,万仟1,2,龚春叶1,2   

  1. (1.国防科技大学并行与分布处理国家重点实验室,湖南 长沙 410073;
    2.复杂系统软件工程湖南省重点实验室,湖南 长沙 410073)

  • 收稿日期:2021-06-28 修回日期:2021-11-20 接受日期:2022-11-25 出版日期:2022-11-25 发布日期:2022-11-25
  • 基金资助:
    国家重点研发计划(2021YFB0300101);“国家数值风洞”工程基础研究课题(NNW2019ZT5-A10)

An improved method for solving partial differential equations using deep neural networks

CHEN Xin-hai1,2,LIU Jie1,2,WAN Qian1,2,GONG Chun-ye1,2   

  1. (1.Science and Technology on Parallel and Distributed Processing Laboratory,
    National University of Defense Technology,Changsha 410073;
    2.Laboratory of Software Engineering for Complex Systems,Changsha 410073,China)
  • Received:2021-06-28 Revised:2021-11-20 Accepted:2022-11-25 Online:2022-11-25 Published:2022-11-25

摘要: 偏微分方程求解是计算流体力学等科学与工程领域中数值分析的计算核心。由于物理的多尺度特性和对离散网格质量的敏感性,传统的数值求解方法通常包含复杂的人机交互和昂贵的网格剖分开销,限制了其在许多实时模拟和优化设计问题上的应用效率。提出了一种改进的基于深度神经网络的偏微分方程求解方法TaylorPINN。该方法利用深度神经网络的万能逼近定理和泰勒公式的函数拟合能力,实现了无网格的数值求解过程。在Helmholtz、Klein-Gordon和Navier-Stokes方程上的数值实验结果表明,TaylorPINN能够很好地拟合计算域内时空点坐标与待求函数值之间的映射关系,并提供了准确的数值预测结果。与常用的基于物理信息神经网络方法相比,对于不同的数值问题,TaylorPINN将预测精度提升了3~20倍。

关键词: 偏微分方程, 数值分析, 神经网络, 泰勒公式, 无网格

Abstract: Solving partial differential equations plays a vital role of numerical analysis in scientific and engineering fields such as computational fluid dynamics. Due to the multi-scale nature of physics and sensitivity to the quality of the discrete mesh, traditional numerical methods often require complex human-computer interaction and expensive meshing overhead, which limit their application to many real-time simulation and optimal design problems. This paper proposes an improved neural network-based method for solving partial differential equations, named TaylorPINN. It utilizes the universal approximation theorem of neural networks and the function-fitting capability of Taylor formula, and provides a mesh-free numerical solving process. Numerical experimental results on Helmholtz, Klein-Gordon, and Navier-Stokes equations demonstrate that TaylorPINN is able to approximate the underlying mapping relations between the coordinate inputs and quantities of interest, yielding an accurate prediction result. Compared with the widely used physics-informed neural network method, TaylorPINN improves the prediction accuracy by a factor of 3~20x across different numerical problems.

Key words: partial differential equation, numerical analysis, deep neural network, Taylor formula, mesh-free