计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (12): 2206-2212.
罗月童,段昶,江佩峰,周波
LUO Yue-tong,DUAN Chang,JIANG Pei-feng,ZHUO Bo
摘要: 基于深度学习的目标检测算法在工业检测中应用广泛,为解决工业缺陷数据不足的问题,提出了一种基于pix2pix改进的缺陷数据增强方法。从加强生成器和判别器对图像中缺陷区域的注意力出发,针对pix2pix进行了如下改进:(1)仅将整幅图像的缺陷区域作为判别器的输入,以此提升生成器对缺陷区域的注意力,同时,判别器采用了更小的卷积核提取缺陷区域的特征;(2)仅将图像中所有缺陷区域的平均生成对抗损失作为该图像的生成对抗损失,使网络更加关注缺陷区域的特征学习。在工业LED缺陷数据集上的实验结果表明,本方法生成的缺陷具有更逼真的视觉效果和更低的FID指数,同时有效提升了基于RetinaNet算法的缺陷检测精度。