摘要: 针对时空图卷积网络ST-GCN中GCN的关节邻接图不易学习远端关节之间的语义信息和TCN在描述时间信息方面存在不足的问题,引入了数字签名预处理来增强数据,提出了基于路径签名的改进时空图卷积网络SSIT-GCN。首先将关节位置坐标的时间序列输入签名层进行数据预处理,在该层时间序列通过嵌入算法被转换为多维路径,将其划分为多条路径并计算每条路径的签名特征;其次重新设计GCN的关节邻接矩阵,并用反卷积来代替补零,以保持TCN的尺寸不变,还引入1×1的卷积核增加非线性来改进ST-GCN,得到改进时空图卷积网络SIT-GCN;最后用签名特征代替原始数据输入SIT-GCN,得到最终的输出结果。实验结果表明,基于路径签名的改进时空图卷积网络大大提高了训练精度,缩短了训练时间,对动态手势识别有较好的识别能力和识别速度。