• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (03): 471-478.

• 图形与图像 • 上一篇    下一篇

基于全局注意力的室内人数统计模型

李静1,2,何强1,2,张长伦1,2,3,王恒友1,2   

  1. (1.北京建筑大学理学院,北京 100044;2.北京建筑大学大数据建模理论与技术研究所,北京 100044;
    3.北京建筑大学北京未来城市设计高精尖创新中心,北京 100044)
  • 收稿日期:2021-09-18 修回日期:2021-12-08 接受日期:2022-03-25 出版日期:2022-03-25 发布日期:2022-03-24
  • 基金资助:
    国家自然科学基金(62072024,61473111);北京建筑大学科学研究基金(KYJJ2017017,Y19-19,Y18-11);住房和城乡建设部科学技术计划北京建筑大学北京未来城市设计高精尖创新中心开放课题(UDC2019033324,UDC201703332);河北省机器学习与计算智能重点实验室资助课题(2019-2021-A)

An indoor people counting model based on global attention

LI Jing1,2,HE Qiang1,2,ZHANG Chang-lun1,2,3,WANG Heng-you1,2   

  1. (1.School of Science,Beijing University of Civil Engineering and Architecture,Beijing 100044;
    2.Institute of Big Data Modeling Theory and Technology,
    Beijing University of Civil Engineering and Architecture,Beijing 100044;
    3.Beijing Advanced Innovation Center for Future Urban Design,
    Beijing University of Civil Engineering and Architecture,Beijing  100044,China)
  • Received:2021-09-18 Revised:2021-12-08 Accepted:2022-03-25 Online:2022-03-25 Published:2022-03-24

摘要: 随着人工智能技术的爆炸式发展,机器学习、深度学习等技术在人脸识别、行人检测和视频跟踪等各个领域得到了广泛的应用,其中利用目标检测进行室内人数统计一直以来是一个热门的研究。室内监控画面存在人群相互遮挡,且目标特征模糊等问题,往往导致检测准确率低,误检率和漏检率高等情况的出现。为了解决此问题,提出了一种基于全局注意力的室内人数统计模型,引入注意力机制,对目标检测算法YOLOv3进行改进,通过提取更多小人头或模糊人头的特征来增强检测能力。实验结果表明,改进后的网络模型具有更高的召回率和平均精度。

关键词: 目标检测, 人数统计, 注意力机制, YOLOv3

Abstract: With the explosive development of artificial intelligence technology, machine learning, deep learning and other technologies have been widely used in face recognition, pedestrian detection, video tracking and other fields. Among them, using target detection for indoor crowd statistics has attracted a lot of attentions. Due to the problems such as mutual occlusion of crowds and blurred target features in the indoor monitoring screen, it often leads to low detection accuracy and high false detection rate and missed detection rate. In order to solve this problem, an indoor people counting model based on global attention is proposed. The model introduces the attention mechanism, optimizes the object detection algorithm YOLOv3, and enhances the detection ability by extracting more features of small or unclear heads. The experimental results show that the improved network model has higher recall and average precision.


Key words: object detection, people counting, global attention, YOLOv3