• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (02): 308-316.

• 图形与图像 • 上一篇    下一篇

基于表观token和标志点token的头影解剖标志点定位模型

陆刚1,肖金梅2,王向文1,蒋芸1,蔺想红1   

  1. (1.西北师范大学计算机科学与工程学院,甘肃 兰州 730070;2.定西市人民医院放射科,甘肃 定西 743000) 

  • 收稿日期:2023-12-29 修回日期:2024-03-04 接受日期:2025-02-25 出版日期:2025-02-25 发布日期:2025-02-24
  • 基金资助:
    西北师范大学青年教师科研能力提升计划(NWNU-LKQN2024-23);甘肃省自然科学基金(24JRRA127) 

Cephalometric anatomical landmark localization model based on appearance token and landmark token

LU Gang1,XIAO Jinmei2,WANG Xiangwen1,JIANG Yun1,LIN Xianghong1   

  1. (1.College of Computer Science & Engineering,Northwest Normal University,Lanzhou  730070;
    2.Department of Radiology,Dingxi People’s Hospital,Dingxi 743000,China)
  • Received:2023-12-29 Revised:2024-03-04 Accepted:2025-02-25 Online:2025-02-25 Published:2025-02-24

摘要: 目前,已有的深度学习模型还无法准确、可靠地定位出2D头影X射线图像上的解剖标志点。为此,提出了一种用于头影测量的基于表观token和标志点token定位的模型。首先,从原始图像中采样出分辨率不同但大小固定的图像块;其次,将图像块输入到特征提取网络中提取多尺度特征;再次,通过线性投影将多尺度特征转换成表观token,将其与标志点token一起输入到关系推理层中,让标志点token在推理层中学习其与表观token间的内在关系;最后,经过多次迭代推理,令初始点以级联的方式逐步向目标移动。与先进的基线模型相比,所提出模型在公开头影X射线图像上表现出更优越的性能。

关键词: 级联方式, 头影测量, 标志点定位;关系推理 ,

Abstract: The currently existing deep learning models are still unable to accurately and reliably locate anatomical landmark points on 2D cephalometric X-ray images. To address this issue,  proposes a localization model  for cephalometric measurement based on appearance token and landmark token. Firstly, fixed-size image patches of different resolutions are sampled from the original image and input into a feature extraction network to extract multi-scale features. Then, these features are converted into appearance tokens through linear projection and, together with landmark tokens, input into a relational reasoning layer. This allows the landmark tokens to learn the intrinsic relationships between the appearance tokens and the land-marks in the interence layer. Finally, through multiple iterative inferences, the model moves the initial points from coarse to fine in a cascaded manner towards the target. Compared with advanced baseline models, the proposed model demonstrates superior localization performance on public cephalometric X-ray images.

Key words: cascaded manner, cephalometric measurement, landmark localization, relational inference