• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (10): 1853-1866.

• 人工智能与数据挖掘 • 上一篇    下一篇

多策略改进的精英金豺优化算法

吴智祥,刘杰,覃涛,陈昌盛,李伟,杨靖   

  1. (1.贵州大学电气工程学院,贵州 贵阳 550025;2.中国电力建设集团贵州工程有限公司,贵州 贵阳 550025;
    3.贵州大学农学院,贵州 贵阳 550025;4.贵州省“互联网+”协同智能制造重点实验室,贵州 贵阳 550025)
  • 收稿日期:2024-01-15 修回日期:2024-04-20 出版日期:2025-10-25 发布日期:2025-10-29
  • 基金资助:
    国家自然科学基金(61640014,61963009);贵州省教育厅创新群体(黔教合KY字[2021]012);贵州省科技支撑计划(黔科合支撑[2023]一般411,黔科合支撑[2023]一般412,黔科合支撑[2022]一般017,黔科合支撑[2024]一般051);贵州省教育厅工程研究中心(黔教技[2022]040,黔教技[2022]043);中国电建集团科技项目(DJ-ZDXM-2020-19,DJ-ZDXM-2022-44);贵州省双碳研究院开放课题(DCRE-2023-13)

Elite golden jackal optimization based on multi-strategy improvement

WU Zhixiang,LIU Jie,QIN Tao,CHEN Changsheng,LI Wei,YANG Jing   

  1.  (1.College of Electrical Engineering,Guizhou University,Guiyang 550025;
    2.Power China  Guizhou Engineering Co.,Ltd.,Guiyang 550025;
    3.College of Agricultural,Guizhou University,Guiyang 550025;
    4.Guizhou Provincial Key Laboratory of “Internet+” Collaborative Intelligent Manufacturing,Guiyang 550025,China)
  • Received:2024-01-15 Revised:2024-04-20 Online:2025-10-25 Published:2025-10-29

摘要: 针对金豺优化算法求解优化问题时存在收敛速度慢、易陷入局部最优等问题,提出了一种多策略改进的精英金豺优化算法EGJO。首先,通过精英反向学习策略选取精英种群寻优求解,在提高种群质量与多样性的同时有效地提升算法的收敛精度与速度。其次,采用双面镜反射理论处理越界个体,解决种群分布不均匀的问题。再次,提出一种自适应能量因子,协调算法的全局搜索与局部开发过程。最后,对种群最优个体进行柯西变异扰动,提升算法跳出局部最优的能力。通过16个典型基准测试函数的优化仿真实验,从收敛性、鲁棒性、Wilcoxon秩和检验等方面与6种优化算法进行对比分析。实验结果表明,改进的精英金豺优化算法的收敛精度和速度均得到了显著提升。另外,将改进的精英金豺算法用于求解2个典型的工程优化问题,表明了所提算法在解决实际工程优化问题时的可行性和高效性。

关键词: 金豺优化算法, 精英反向学习, 自适应能量因子, 边界处理, 秩和检验, 工程优化

Abstract: Aiming at the problems of poor convergence accuracy, easy to fall into local optimality of golden jackal optimization algorithm when solving optimization problems, an elite golden jackal optimization algorithm based on multi-strategy (EGJO) is proposed. Firstly, the elite opposition-based learning is used to select the elite population to find the optimal solution, that can improve the quality and diversity of the population,  thus  effectively improve the convergence accuracy and speed of the algorithm. Secondly, the two-sided mirror reflection theory is used to deal with the transboundary individuals to solve the problem of uneven population distribution. Thirdly, an adaptive energy factor is proposed to better coordinate the exploration and the exploitation. Finally, Cauchy mutation strategy is applied to the optimal individuals of the population to improve the ability of the algorithm to jump out of the local optimal. Through the optimization simulation experiment of 16 typical benchmark functions, the convergence, robustness, Wilcoxon rank sum test and other aspects are analyzed comprehensively, and the six optimization algorithms are compared. The experimental results show that the convergence accuracy and speed of the EGJO are significantly improved. In addition, two typical engineering problems are optimized, and the results show that the proposed algorithm has the feasibility and efficiency to solve the actual optimization problems.


Key words: golden jackal optimization algorithm, elite opposition-based learning, adaptive energy factor, boundary processing, rank sum test, engineering optimization