计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (8): 1364-1380.
郑伟巍,郑重,陈微,陆洪毅
ZHENG Weiwei,ZHENG Zhong,CHEN Wei,LU Hongyi
摘要: 随着处理器性能需求的不断增长,超标量和深度流水线技术被广泛应用于现代微处理器中,从而提升指令执行的并行性。然而,程序中的条件分支指令对流水线的连续执行构成了挑战,限制了指令并行执行的能力。为解决这一控制冒险问题,分支预测技术应运而生,其核心在于预先推测分支指令的跳转方向和地址,进而最小化因分支指令引起的流水线停顿延迟。基于统一的性能评估框架,对比分析了当前主流的基于TAGE的分支预测器和基于神经网络的分支预测器。实验结果表明,不同分支预测器对特定轨迹存在不同的偏好性,融合多种预测机制或可以进一步挖掘预测潜能。同时,执行任务上下文对分支预测性能的影响不容忽视,特别是在多进程环境中。此外,实验还发现当前CNN预测器在处理复杂分支时的性能不稳定,整体表现未能超越基准TAGE-SC-L预测器,仍需继续优化。
中图分类号: