• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (8): 1483-1492.

• 人工智能与数据挖掘 • 上一篇    下一篇

基于密集卷积和多特征感知的链接预测模型研究

刘金竹,张东,李冠宇   

  1. (大连海事大学信息科学技术学院,辽宁 大连 116026)
  • 收稿日期:2023-12-05 修回日期:2024-05-09 出版日期:2025-08-25 发布日期:2025-08-27
  • 基金资助:
    国家自然科学基金(61976032,62002039)

A link prediction model based on dense convolution and multi-feature perception

LIU Jinzhu,ZHANG Dong,LI Guanyu   

  1. (Information Science and Technology College,Dalian Maritime University, Dalian 116026,China)
  • Received:2023-12-05 Revised:2024-05-09 Online:2025-08-25 Published:2025-08-27

摘要: ConvE将卷积神经网络应用于链接预测任务,其优异的性能引起了学术界的关注。但是,ConvE等卷积神经网络模型对图结构信息的特征提取仍不充分且没有考虑知识图谱中关系存在的多特征属性。为了充分利用图结构信息特征以及关系的多特征属性,提出了一个新的链接预测模型——ComConvR。该模型对关系的多特征进行提取,并向卷积神经网络添加密集卷积块,增强了网络的信息提取能力,实现了多特征融合,以完成链接预测任务。最后,使用ComConvR在4个基准数据集上进行链接预测实验并进行消融实验和关键参数讨论,表明了密集卷积块的有效性和高效性。 

关键词: 链接预测;神经网络;多特征感知;密集卷积 ,

Abstract: ConvE applies convolutional neural network (CNN) to link prediction tasks,and its outstanding performance has attracted significant attention in academia.However,CNN-based models like ConvE still inadequately extract graph structural information and fail to consider the multi-feature attributes of relations in knowledge graphs.To fully leverage graph structural features and the multi-feature properties of relations,this paper proposes a novel link prediction model——ComConvR,which extracts the multi-feature representations of relations and incorporates dense convolutional blocks into the CNN.This enhancement strengthens the networks feature extraction capability and enables multi-feature fusion for link prediction.Experiments on four benchmark datasets demonstrate the effectiveness of ComConvR,supported by ablation studies and key parameter analyses that validate the efficiency and contribution of the dense convolutional blocks.

Key words: link prediction, neural network, multi-feature perception, dense convolution